分析 求出函数的导数,二阶导数,得到一阶导函数有极大值点,根据f′(x)的单调性,只要$f'(\frac{1}{a})=ln\frac{1}{a}-1>0$,解出即可.
解答 解:∵f(x)=xlnx-$\frac{a}{2}$x2-x+1,(x>0),
∴f′(x)=lnx-ax,$f''(x)=\frac{1}{x}-a=0$,
得一阶导函数有极大值点x=$\frac{1}{a}$,
由于f′(0)→-∞,x→+∞时,f′(x)→-∞,
因此原函数要有两个极值点,
只要$f'(\frac{1}{a})=ln\frac{1}{a}-1>0$
解得$0<a<\frac{1}{e}$,
故答案为:(0,$\frac{1}{e}$).
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com