精英家教网 > 高中数学 > 题目详情
17.(1)求f(x)=$\frac{2x+3}{x-2}$的值域;
(2)求f(x)=$\frac{2x+3}{x-2}$,x∈[3,8]的值域.

分析 (1)采用分离常数法求解即可.
(2)采用分离常数法,分离后,根据一次函数的单调性即可求解x∈[3,8]的值域.

解答 解:(1)∵f(x)=$\frac{2x+3}{x-2}$,定义域为{x∈R|x≠2}
可化解为:f(x)=$\frac{2(x-2)+7}{x-2}$=2$+\frac{7}{x-2}$
∵x≠2
∴$\frac{7}{x-2}≠0$
∴f(x)≠2
故得函数f(x)的值域为(-∞,2)∪(2,+∞);
(2)f(x)=$\frac{2x+3}{x-2}$,x∈[3,8],
可化解为:f(x)=$\frac{2(x-2)+7}{x-2}$=2$+\frac{7}{x-2}$
∵y=x-2是一次函数,k>0,在x∈[3,8]是单调增区间.
∴1≤x-2≤6
则:$\frac{7}{6}≤\frac{7}{x-2}≤7$
∴$\frac{19}{6}$≤f(x)≤9
故得函数f(x)的值域为[$\frac{19}{6}$,9].

点评 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.注意定义域的范围要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.以下四个关于圆锥曲线的命题中:其中真命题为④(写出所有真命题的序号)
①A、B为不同的两个定点,K为非零常数,若|PA|-|PB|=K,则动点P的轨迹是双曲线.
②平面内与两个定点F1,F2的距离和等于常数的点的轨迹是椭圆.
③平面内与一个定点F和一条定直线l距离相等的点的轨迹叫做抛物线.
④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x${\;}^{2}+ax+sin(\frac{π}{2}x)$,x∈(0,1).
(1)若f(x)在(0,1)上是单调递增函数,求a的取值范围;
(2)当a=-2时,f(x)≥f(x0)恒成立,且f(x1)=f(x2)(x1≠x2),求证:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,a3=5,a5=3,则该数列的前10项的S10等于(  )
A.24B.25C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{3}$x3+x2+ax和函数g(x)=e-x,若对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的值6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=px+$\frac{q}{x}$(实数p、q为常数),且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}}$]上的单调性,并用函数单调性定义证明;
(3)当x∈(0,$\frac{1}{2}}$]时,函数f(x)≥2-m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的数列{an}满足:an+12=tan2+(t-1)anan+1,其中n∈N*
(1)若a2-a1=8,a3=a,且数列{an}是唯一的.
①求a的值;
②设数列{bn}满足bn=$\frac{{n{a_n}}}{{4(2n+1){2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n和为Sn,a1=1,Sn=nan-2n2+2n(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)是否存在自然数n,使得S1+$\frac{S_2}{2}$+$\frac{S_3}{3}$+…+$\frac{S_n}{n}$+2n=1124?若存在,求出n的值; 若不存在,请说明理由;
(3)设cn=$\frac{2}{{n({{a_n}+7})}}$(n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn>$\frac{m}{32}$(m∈Z),对n∈N*恒成立,求m的最大值.

查看答案和解析>>

同步练习册答案