精英家教网 > 高中数学 > 题目详情

【题目】如图给出的是计算 的值的一个程序框图,判断框内应填入的条件是(

A.i<20
B.i>20
C.i<10
D.i>10

【答案】D
【解析】解:由题意,该程序按如下步骤运行
经过第一次循环得到s= ,n=4,i=2;
经过第二次循环得到s= + ,n=6,i=3;
经过第三次循环得到s= + + ,n=8,i=4;

看到S中最后一项的分母与i的关系是:分母=2(i﹣1)
∴20=2(i﹣1)解得i=11时需要输出
所以判断框的条件应为i>10.
故选D.
【考点精析】本题主要考查了算法的循环结构的相关知识点,需要掌握在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+log3n=log3bn , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N,分别是AB,PC的中点;

(1)求证:MN∥平面PAD;
(2)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球内接四棱锥的高为相交于,球的表面积为,若中点.

(1)求异面直线所成角的余弦值;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好.国家环境标准设定的PM2.5日均值(微克/立方米)与空气质量等级对应关系如表:

PM2.5日均值
(微克/立方米)

0﹣﹣35

35﹣﹣75

75﹣﹣115

115﹣﹣150

150﹣﹣250

250以上

空气质量等级

1级

2级

3级
轻度污染

4级
中度污染

5级
重度污染

6级
严重污染

由某市城市环境监测网获得4月份某5天甲、乙两城市的空气质量指数数据,用茎叶图表示,如图所示.

(1)试根据统计数据,分别写出两城区的PM2.5日均值的中位数,并从中位数角度判断哪个城区的空气质量较好?
(2)考虑用频率估计概率的方法,试根据统计数据,估计甲城区某一天空气质量等级为3
(3)分别从甲、乙两个城区的统计数据中任取一个,试求这两城区空气质量等级相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把边长为2的正方形ABCD沿对角线BD折起并连接AC形成三棱锥C﹣ABD,其正视图、俯视图均为等腰直角三角形(如图所示),则三棱锥C﹣ABD的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理)如图,在四棱锥S﹣ABCD中,底面ABCD是边长为1的正方形,S到A、B、C、D的距离都等于2.给出以下结论:
+ + + =
+ =
+ =
=
=0,
其中正确结论是(

A.①②③
B.④⑤
C.②④
D.③④

查看答案和解析>>

同步练习册答案