精英家教网 > 高中数学 > 题目详情

【题目】把边长为2的正方形ABCD沿对角线BD折起并连接AC形成三棱锥C﹣ABD,其正视图、俯视图均为等腰直角三角形(如图所示),则三棱锥C﹣ABD的表面积为

【答案】4+2
【解析】解:如图:∵正视图、俯视图均为全等的等腰直角三角形,
∴平面BCD⊥平面ABD,
又O为BD的中点,∴CO⊥平面ABD,OA⊥平面BCD,
三角形ACD与△ABC等式等边三角形,边长为2,所以面积相等为
又△ABD和△BCD面积和为正方形的面积4,
∴三棱锥C﹣ABD的表面积为2 +4;
所以答案是:4+2

【考点精析】根据题目的已知条件,利用由三视图求面积、体积的相关知识可以得到问题的答案,需要掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为

1求动点的轨迹的方程;

2过动点作曲线的两条切线,切点分别为 ,求证: 的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 的值的一个程序框图,判断框内应填入的条件是(

A.i<20
B.i>20
C.i<10
D.i>10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个函数: .

(I)判断这个函数的奇偶性;

(II)从中任意拿取两张卡片,若其中至少有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为 ,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线的斜率存在,取为,取直线的斜率为,请验证是否为定值?若是,计算出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求证:平面PAC⊥平面PCD;
(2)若E是PD的中点,求平面BCE将四棱锥P﹣ABCD分成的上下两部分体积V1、V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对边的长分别为a、b、c,则下列命题:
①若ab>c2 , 则C
②若a+b>2c,则C
③若a3+b3=c3 , 则C
④若(a+b)c<2ab,则ab>c2
⑤若(a2+b2)c2<2a2b2 , 则C
其中正确命题是(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.

(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.

查看答案和解析>>

同步练习册答案