精英家教网 > 高中数学 > 题目详情
10.直线y=$\frac{1}{2}$x+b是曲线y=lnx(x>0)的一条切线,则实数b的值为(  )
A.2B.ln2+1C.ln2-1D.ln2

分析 欲实数b的大小,只须求出切线方程即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率,最后求出切线方程与已知直线方程对照即可.

解答 解:y′=(lnx)′=$\frac{1}{x}$,令$\frac{1}{x}$得x=2,
∴切点为(2,ln2),
代入直线方程y=$\frac{1}{2}$x+b,
∴ln2=$\frac{1}{2}$×2+b,
∴b=ln2-1.
故选:C.

点评 本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,求出切点是解题的关键,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.对于左边2×2列联表,在二维条形图中,两个比例的值$\frac{a}{a+b}$与$\frac{c}{c+d}$相差越大,H:“x 与 Y 有关系”的可能性越大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线ax+y-5=0截圆C:x2+y2-4x-2y+1=0的弦长为4,则a=(  )
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2+bx-3(b∈R)的零点个数是(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1=2an+1.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an}的通项公式an和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(1-x)(1+2x)5展开式按x的升幂排列,则第3项的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式x+y-1>0表示的区域在直线x+y-1=0的(  )
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某一几何体的三视图,则这个几何体的侧面积和体积分别是(  )
A.8$\sqrt{2}$+2$\sqrt{5}$+6,8B.2$\sqrt{2}$+8$\sqrt{5}$+6,8C.4$\sqrt{2}$+8$\sqrt{5}$+12,16D.8$\sqrt{2}$+4$\sqrt{5}$+12,16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=2sin(ωx+φ)为偶函数(0<φ<π),其图象与直线y=2相邻的两个交点的横坐标分别为x1,x2且|x1-x2|=π则(  )
A.ω=2,φ=$\frac{π}{2}$B.ω=$\frac{1}{2}$,φ=$\frac{π}{2}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{4}$D.ω=2,φ=$\frac{π}{4}$

查看答案和解析>>

同步练习册答案