| A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
分析 根据抛物线与双曲线的焦点相同,可得$\frac{p}{2}=c$,经过利用直线AB,过两曲线的公共焦点建立方程关系即可求出双曲线的离心率.
解答 解:∵抛物线y2=2px(p>0)和双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$有共同的焦点,
∴$\frac{p}{2}=c$,
∵直线AB过两曲线的公共焦点F,
∴$(\frac{p}{2},p)$,即(c,2c)为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上的一个点,
∴$\frac{{c}^{2}}{{a}^{2}}-\frac{{4c}^{2}}{{b}^{2}}=1$,
∴(c2-a2)c2-4a2c2=a2(c2-a2),
∴e4-6e2+1=0,
∴${e}^{2}=3±2\sqrt{2}$,
∵e>1,
∴e=$1+\sqrt{2}$,
故选:B.
点评 本题考查抛物线与双曲线的综合,考查抛物线与双曲线的几何性质,确定几何量之间的关系是关键.综合性较强,考查学生的计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{13}}}{3}$ | B. | $\frac{{\sqrt{13}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{10}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com