分析 (Ⅰ)利用特殊角的三角函数值,诱导公式化简已知即可计算得解.
(Ⅱ) 由已知利用同角三角函数基本关系式可求cosα,利用诱导公式化简所求即可计算得解.
解答 解:(Ⅰ)sin270°-3cos180°-2tan135°-4cos300°
=(-1)-3×(-1)-2×(-1)-4×$\frac{1}{2}$
=2;
(Ⅱ)∵α是第二象限的角,且sinα=$\frac{5}{13}$,可得:cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{12}{13}$,
∴cos(π+α)cos(α-$\frac{π}{2}$)+cos($\frac{3π}{2}$+α)•sin(π-α)
=(-cosα)sinα+sin2α
=sin2α-cosαsinα
=($\frac{5}{13}$)2-$\frac{5}{13}$×(-$\frac{12}{13}$)
=$\frac{85}{169}$.
点评 本题主要考查了诱导公式,特殊角的三角函数值,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2e | B. | ${e^{\frac{π}{2}}}$ | C. | e | D. | 2${e^{\frac{π}{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2015}$ | B. | 1+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{2015!}$ | ||
| C. | 1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2016}$ | D. | 1+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{2016!}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{10}{27}$ | C. | $\frac{4}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com