精英家教网 > 高中数学 > 题目详情
9.已知f(x)=ex(sinx-cosx),则函数f(x)的图象x=$\frac{π}{2}$处的切线的斜率为(  )
A.2eB.${e^{\frac{π}{2}}}$C.eD.2${e^{\frac{π}{2}}}$

分析 求出函数的导数,运用导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,计算即可得到所求值.

解答 解:f(x)=ex(sinx-cosx)的导数为
f′(x)=ex(sinx-cosx)+ex(cosx+sinx)=2ex•sinx,
可得函数f(x)的图象x=$\frac{π}{2}$处的切线的斜率为k=2e${\;}^{\frac{π}{2}}$•sin$\frac{π}{2}$=2e${\;}^{\frac{π}{2}}$.
故选:D.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1=m(m>0),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,则m的所有取值之积为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$)=15$\sqrt{2}$-19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.到点C(3,-2)的距离等于2的轨迹方程为(x-3)2+(y+2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数,α为直线l的倾斜角),以原点O为极点,x轴正半轴为极轴坐标系,圆C的极坐标方程为ρ=4sin(θ+$\frac{π}{3}$),
(I)求证:直线1过定点,并求其定点M坐标;
(Ⅱ)直线l与圆C的两个交点为A,B.当|AB|最小时,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.正四棱锥的侧棱长是底面长的k倍,则k的取值范围是(  )
A.(0,+∞)B.($\frac{1}{2}$,+∞})C.($\sqrt{2}$,+∞)D.($\frac{{\sqrt{2}}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前160个圈中的●的个数是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)的焦点到渐近线的距离为3,则C的离心率为(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)求值:sin270°-3cos180°-2tan135°-4cos300°;
(Ⅱ) 已知α是第二象限的角,且sinα=$\frac{5}{13}$,求cos(π+α)cos(α-$\frac{π}{2}$)+cos($\frac{3π}{2}$+α)•sin(π-α)的值.

查看答案和解析>>

同步练习册答案