| A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
分析 对m分类讨论,利用递推关系得出m的所有取值,即可得出结论.
解答 解:数列{an}满足a1=m(m>0),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,a3=4,
①若m>2,则a2=m-1>1,∴a3=m-2=4,解得m=6.
②若m=2,则a2=m-1=1,∴a3=$\frac{1}{{a}_{2}}$=1≠4,舍去.
③若1<m<2,则a2=m-1∈(0,1),∴a3=$\frac{1}{m-1}$=4,解得m=$\frac{5}{4}$.
④若m=1,则a2=$\frac{1}{{a}_{1}}$=1,∴a3=$\frac{1}{{a}_{2}}$≠4,舍去.
⑤若0<m<1,则a2=$\frac{1}{{a}_{1}}$=$\frac{1}{m}$>1,∴a3=a2-1=$\frac{1}{m}$-1=4,解得m=$\frac{1}{5}$.
综上可得:m∈{6,$\frac{5}{4}$,$\frac{1}{5}$},
∴m的所有取值之积为6×$\frac{5}{4}$×$\frac{1}{5}$=$\frac{3}{2}$.
故选:B.
点评 本题考查了等比数列的通项公式、递推关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2e | B. | ${e^{\frac{π}{2}}}$ | C. | e | D. | 2${e^{\frac{π}{2}}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com