分析 (Ⅰ)利用余弦定理即可求出角A的大小;
(Ⅱ)利用三角函数的恒等变换,结合正弦、余弦定理,即可求出结果.
解答 解:(Ⅰ)△ABC中,a2=(b-c)2+(2-$\sqrt{3}$)bc,
∴b2+c2-a2=$\sqrt{3}$bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$;
又A∈(0,π),∴A=$\frac{π}{6}$;
(Ⅱ)∵$\frac{1-cos2A}{1-cos2B}$=$\frac{a}{b}$,
∴$\frac{{2sin}^{2}A}{{2sin}^{2}B}$=$\frac{a}{b}$,
即$\frac{{a}^{2}}{{b}^{2}}$=$\frac{a}{b}$,
∴$\frac{a}{b}$=1,即a=b;
∴B=A=$\frac{π}{6}$,C=π-(A+B)=$\frac{2π}{3}$;
又S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$a2sin$\frac{2π}{3}$=$\sqrt{3}$,∴a=2;
∴c2=a2+b2-2abcosC=22+22-2×2×2cos$\frac{2π}{3}$=12,
解得边长c=2$\sqrt{3}$.
点评 本题考查了三角恒等变换和正弦、余弦定理的应用问题,也考查了推理与计算能力,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧q | C. | (¬p)∧(¬q) | D. | ¬p∨q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2}$,$\frac{3π}{2}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | (-$\frac{π}{2}$,$\frac{π}{2}$) | D. | (-$\frac{π}{4}$,$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com