精英家教网 > 高中数学 > 题目详情
18.已知双曲线C:$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)的焦点到渐近线的距离为3,则C的离心率为(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

分析 根据焦点到渐近线的距离为3,求出b=3,结合双曲线离心率的定义进行求解即可.

解答 解:设双曲线的一个焦点为F(c,0),双曲线的一条渐近线为y=$±\frac{b}{a}x$,即bx-ay=0,
所以焦点到渐近线的距离d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{bc}{c}=b$,即b=3,
由双曲线C:$\frac{x^2}{4}$-$\frac{y^2}{b^2}$=1(b>0)得a=2,则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{{3}^{2}+4}=\sqrt{13}$,
则离心率e=$\frac{c}{a}$=$\frac{{\sqrt{13}}}{2}$,
故选:B.

点评 本题主要考查双曲线离心率的计算,根据焦点到渐近线的距离求出b的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$对称,且图象上相邻最高点的距离为π.(1)求f($\frac{π}{4}$)的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后,得到y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=ex(sinx-cosx),则函数f(x)的图象x=$\frac{π}{2}$处的切线的斜率为(  )
A.2eB.${e^{\frac{π}{2}}}$C.eD.2${e^{\frac{π}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线C1:x2-$\frac{{y}^{2}}{4}$=1,求与双曲线C1有相同的焦点,且过点P(4,$\sqrt{3}$)的双曲线C2的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知b∈{x|$\frac{3-x}{x}$≥0},则直线x+by=0与圆(x-2)2+y2=2相离的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某工厂共有甲、乙、丙三个车间,甲车间有x名职工,乙车间有300名职工,丙车间有y名职工,现采用分层抽样的方法从该厂抽取容量为45人的样本,甲车间抽取20人,丙车间抽取10人,则该工厂共有的职工人数是(  )
A.600人B.800人C.900人D.1000人

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在六条棱长均相等的三棱锥A-BCD中,已知M,N,K分别是棱AB,CD,AC的中点,则下列结论中:
①MN∥AD;②NK∥平面ABD;③AB⊥CD;④平面CDM⊥平面ABN,正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanα<0,|cosα|=cosα,则α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px(p>0)与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的交点为A,B,且直线AB,过两曲线的公共焦点F,则双曲线的离心率为e(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.2$\sqrt{2}$D.2$\sqrt{2}$+2

查看答案和解析>>

同步练习册答案