精英家教网 > 高中数学 > 题目详情
9.已知a=1,b,c∈{1,2,4},则以a,b,c为长度的三条线段能构成三角形的概率为(  )
A.$\frac{1}{3}$B.$\frac{10}{27}$C.$\frac{4}{9}$D.$\frac{2}{3}$

分析 本题是一个古典概率试验发生包含的基本事件可以列举出共8种;而满足条件的事件是可以构成三角形的事件可以列举出共3种;根据古典概型概率公式得到结果.

解答 解:由题意知,本题是一个古典概率
∵试验发生包含的基本事件为(1,1,1),(1,1,2),(1,1,4),(1,2,1),(1,2,2),(1,2,4),(1,4,1),(1,4,2),(1,4,4)共9种;
而满足条件的事件是可以构成三角形的事件为(1,1,1),(1,2,2),(1,4,4)共3种;
∴以这三条线段为边可以构成三角形的概率是$\frac{3}{9}$=$\frac{1}{3}$.
故选:A

点评 本题考查古典概型,考查三角形成立的条件,是一个综合题,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)求值:sin270°-3cos180°-2tan135°-4cos300°;
(Ⅱ) 已知α是第二象限的角,且sinα=$\frac{5}{13}$,求cos(π+α)cos(α-$\frac{π}{2}$)+cos($\frac{3π}{2}$+α)•sin(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是锐角三角形ABC的外接圆圆心,∠A=60°,$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=2m•$\overrightarrow{AO}$,则m的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在正方体ABCD-A1B1C1D1内任取一点,该点在以A为顶点,A1为底面中心,A1B1为底面半径的圆锥内的概率为(  )
A.$\frac{π}{12}$B.$\frac{π}{10}$C.$\frac{π}{8}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等腰三角形顶角的余弦值为m,则底角的余弦值为(  )
A.$\frac{\sqrt{2(1-m)}}{2}$B.$\frac{\sqrt{2(1+m)}}{2}$C.$±\frac{\sqrt{2(1-m)}}{2}$D.$±\frac{\sqrt{2(1+m)}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b为非零向量,则下列命题中真命题的个数为(  )
①若|a|+|b|=|a+b|,则a与b方向相同;
②若|a|+|b|=|a-b|,则a与b方向相反;
③若|a|+|b|=|a-b|,则a与b有相等的模;
④若|a|-|b|=|a-b|,则a与b方向相同.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z=$\frac{2}{1-i}$-2i3(i为虚数单位)表示的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,内角A、B、C所对的边分别为a、b、c,若$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$成等差数列,则cosB+sinB的取值范围为(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}的首项为a1,公差为d,前n项和为Sn,求证:数列{$\frac{{S}_{n}}{n}$}是等差数列.

查看答案和解析>>

同步练习册答案