20£®ÒÑÖªOÊÇÈñ½ÇÈý½ÇÐÎABCµÄÍâ½ÓÔ²Ô²ÐÄ£¬¡ÏA=60¡ã£¬$\frac{cosB}{sinC}$•$\overrightarrow{AB}$+$\frac{cosC}{sinB}$•$\overrightarrow{AC}$=2m•$\overrightarrow{AO}$£¬ÔòmµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\sqrt{2}$C£®1D£®$\frac{1}{2}$

·ÖÎö ¸ù¾ÝOÊÇ¡÷ABCµÄÍâ½ÓÔ²Ô²Ðıã¿ÉµÃ³ö$\overrightarrow{AB}•\overrightarrow{AO}=\frac{|\overrightarrow{AB}{|}^{2}}{2}£¬\overrightarrow{AC}•\overrightarrow{AO}=\frac{|\overrightarrow{AC}{|}^{2}}{2}$£¬ÕâÑùÔÚ$\frac{cosB}{sinC}•\overrightarrow{AB}+\frac{cosC}{sinB}•\overrightarrow{AC}=2m•\overrightarrow{AO}$Á½±ßͬ³ËÒÔ$\overrightarrow{AO}$£¬±ã¿ÉµÃµ½$\frac{cosB}{sinC}•\frac{|\overrightarrow{AB}|}{2}+\frac{cosC}{sinB}•\frac{|\overrightarrow{AC}{|}^{2}}{2}=2m•|\overrightarrow{AO}{|}^{2}$£¬¶ø¿ÉÉè¡÷ABCµÄÍâ½ÓÔ²°ë¾¶ÎªR£¬´Ó¶ø$|\overrightarrow{AO}|=R$£¬²¢ÇÒÓÉÕýÏÒ¶¨ÀíÓÐ$|\overrightarrow{AB}|=2RsinC£¬|\overrightarrow{AC}|=2RsinB$£¬´øÈëÉÏʽ±ã¿ÉµÃµ½£¬sinCcosB+cosCsinB=m£¬¸ù¾Ý¡ÏA=60¡ã¼°Á½½ÇºÍµÄÕýÏÒ¹«Ê½±ã¿ÉÇó³ömµÄÖµ£®

½â´ð ½â£ºÈçͼ£¬È¡ABµÄÖеãD£¬ACµÄÖеãE£¬Á¬½ÓOD£¬OE£¬Ôò£º
OD¡ÍAB£¬OE¡ÍAC£»
¡à$\overrightarrow{AB}•\overrightarrow{AO}=|\overrightarrow{AB}||\overrightarrow{AO}|cos¡ÏBAO$=$\frac{|\overrightarrow{AB}{|}^{2}}{2}$£¬$\overrightarrow{AC}•\overrightarrow{AO}=\frac{|\overrightarrow{AC}{|}^{2}}{2}$£»
¡àÓÉ$\frac{cosB}{sinC}•\overrightarrow{AB}+\frac{cosC}{sinB}•\overrightarrow{AC}=2m•\overrightarrow{AO}$µÃ£¬$\frac{cosB}{sinC}•\overrightarrow{AB}•\overrightarrow{AO}+\frac{cosC}{sinB}•\overrightarrow{AC}•\overrightarrow{AO}=2m•{\overrightarrow{AO}}^{2}$£»
¡à$\frac{cosB}{sinC}•\frac{|\overrightarrow{AB}{|}^{2}}{2}+\frac{cosC}{sinB}•\frac{|\overrightarrow{AC}{|}^{2}}{2}=2m•|\overrightarrow{AO}{|}^{2}$£¨1£©£»
Éè¡÷ABCµÄÍâ½ÓÔ²°ë¾¶ÎªR£¬Ôò$|\overrightarrow{AO}|=R$£»
ÓÉÕýÏÒ¶¨ÀíµÃ£¬$\frac{|\overrightarrow{AB}|}{sinC}=\frac{|\overrightarrow{AC}|}{sinB}=2R$£»
¡à$|\overrightarrow{AB}|=2RsinC£¬|\overrightarrow{AC}|=2RsinB$£¬ÇÒ$|\overrightarrow{AO}|=R$£¬´úÈ루1£©µÃ£º
2cosBsinC•R2+2cosCsinB•R2=2mR2£»
¡àsinCcosB+cosCsinB=sin£¨B+C£©=sinA=m£»
ÓÖ¡ÏA=60¡ã£»
¡à$m=\frac{\sqrt{3}}{2}$£®
¹ÊÑ¡£ºA£®

µãÆÀ ¿¼²éÈý½ÇÐεÄÍâ½ÓÔ²Ô²ÐĵĸÅÄÏòÁ¿ÊýÁ¿»ýµÄ¼ÆË㹫ʽ£¬Èý½Çº¯ÊýµÄ¶¨Ò壬ÒÔ¼°ÕýÏÒ¶¨Àí£¬Á½½ÇºÍµÄÕýÏÒ¹«Ê½£¬²¢Çå³þÈý½ÇÐεÄÄڽǺͣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÁùÌõÀⳤ¾ùÏàµÈµÄÈýÀâ×¶A-BCDÖУ¬ÒÑÖªM£¬N£¬K·Ö±ðÊÇÀâAB£¬CD£¬ACµÄÖе㣬ÔòÏÂÁнáÂÛÖУº
¢ÙMN¡ÎAD£»¢ÚNK¡ÎÆ½ÃæABD£»¢ÛAB¡ÍCD£»¢ÜÆ½ÃæCDM¡ÍÆ½ÃæABN£¬ÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ë«ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©½¹¾à³¤Îª4£¬½¹µãµ½½¥½üÏߵľàÀëµÈÓÚ$\sqrt{3}$£¬ÔòË«ÇúÏßÀëÐÄÂÊΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©ÓëË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ½»µãΪA£¬B£¬ÇÒÖ±ÏßAB£¬¹ýÁ½ÇúÏߵĹ«¹²½¹µãF£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪe£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{2}$+1C£®2$\sqrt{2}$D£®2$\sqrt{2}$+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ë«ÇúÏß$\frac{x^2}{a^2}-{y^2}$=1ÓëÅ×ÎïÏßy2=-12xÓÐÏàͬµÄ½¹µã£¬ÔòË«ÇúÏßµÄÁ½Ìõ½¥½üÏߵķ½³ÌΪ$y=¡À\frac{{\sqrt{2}}}{4}x$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬an+1=$\frac{1}{2}$an+$\frac{1}{2}$£¬ÇóͨÏîan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{2x+y-6¡Ü0}\\{x-y-1¡Ü0}\\{x-1¡Ý0}\end{array}\right.$£¬Èôz=ax+y½öÔڵ㣨$\frac{7}{3}$£¬$\frac{4}{3}$£©´¦È¡µÃ×î´óÖµ£¬ÔòaµÄÖµ¿ÉÒÔΪ£¨¡¡¡¡£©
A£®4B£®2C£®-2D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªa=1£¬b£¬c¡Ê{1£¬2£¬4}£¬ÔòÒÔa£¬b£¬cΪ³¤¶ÈµÄÈýÌõÏß¶ÎÄܹ¹³ÉÈý½ÇÐεĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{10}{27}$C£®$\frac{4}{9}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®tan2013¡ã-tan78¡ã+tan2013¡ãtan78¡ã=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸