精英家教网 > 高中数学 > 题目详情
12.已知函数 f(x)=2lnx+x2-ax.
(Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1,y1),B(x2,y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1,x2,x1<x2且x2>e,若f(x1)-f(x2)≥m恒成立,求实数m的取值范围.

分析 (Ⅰ)当a=5时,f(x)=2lnx+x2-5x.求导,利用导数的正负求f(x)的单调区间;
(Ⅱ)由题意可知:k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>1,$\frac{[f({x}_{2})-{x}_{2}]-[f({x}_{1})-{x}_{1}]}{{x}_{2}-{x}_{1}}$>0,构造函数,确定函数的单调性,分离参数,即可求实数a的取值范围;
(Ⅲ)f(x1)-f(x2)=(2lnx1+x12-ax1)-(2lnx2+x22-ax2)=$\frac{1}{{{x}_{1}}^{2}}$-x12+2lnx12,令x12=x,则0<x<$\frac{1}{{e}^{2}}$,g(x)=$\frac{1}{x}$-x-2lnx,求导,确定函数的单调性,求最值,即可求实数m的取值范围.

解答 解:(Ⅰ)当a=5时,f(x)=2lnx+x2-5x.求导,
f′(x)=$\frac{2{x}^{2}-5x+2}{x}$=$\frac{(2x-1)(x-2)}{x}$,(x>0),
令f′(x)>0,解得:x>2或0<x<$\frac{1}{2}$,
令f′(x)<0,解得:$\frac{1}{2}$<x<2,
∴f(x)的单调递增区间(0,$\frac{1}{2}$),(2,+∞);f(x)的单调递减区间($\frac{1}{2}$,2);
(Ⅱ)由题意可知:k=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>1,∴$\frac{[f({x}_{2})-{x}_{2}]-[f({x}_{1})-{x}_{1}]}{{x}_{2}-{x}_{1}}$>0,
令g(x)=f(x)-x,则g(x)在(0,+∞)上单调递增,
∴g′(x)=f′(x)-1≥0,
∴$\frac{2{x}^{2}-ax+2}{x}$-1≥0在(0,+∞)上恒成立,
∴a≤2x+$\frac{2}{x}$-1在(0,+∞)上恒成立,
∵2x+$\frac{2}{x}$≥4,x=1时取等号,
∴a≤3;
(Ⅲ)∵x1+x2=$\frac{a}{2}$,x1x2=1,∴a=2(x1+x2),x2=$\frac{1}{{x}_{1}}$,
∴f(x1)-f(x2)=(2lnx1+x12-ax1)-(2lnx2+x22-ax2)=$\frac{1}{{{x}_{1}}^{2}}$-x12+2lnx12
令x12=x,则0<x<$\frac{1}{{e}^{2}}$,g(x)=$\frac{1}{x}$-x-2lnx,
∴g′(x)=-$\frac{(x-1)^{2}}{{x}^{2}}$<0,
∴g(x)在(0,$\frac{1}{{e}^{2}}$)上单调递减,
∴g(x)>g($\frac{1}{{e}^{2}}$)=${e}^{2}-\frac{1}{{e}^{2}}$-4,
∴m≤${e}^{2}-\frac{1}{{e}^{2}}$-4.

点评 本题考查导数知识的综合运用,考查函数的单调性与最值,正确构造函数,合理求导是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数y=f(x)的定义域D,若对任意x1,x2∈D,都有|f(x1)-f(x2)|≤1,则称函数y=f(x)为“storm”函数.已知函数f(x)=x3+bx2+cx+1的图象为曲线C,直线y=kx-1与曲线C相切于(1,-10).
(1)求f(x)的解析式;
(2)设0<m≤2,若对x∈[m-2,m],函数g(x)=$\frac{f(x)}{16m}$为“storm”函数,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三名篮球运动员甲、乙、丙进行传球训练,由丙开始传,经过5次传递后,球又被传回给丙,则不同的传球方式共有(  )
A.4种B.10种C.12种D.22种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c且a=1,∠B=45°,S△ABC=2,求边长b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)若正视方向与AD平行,作出该几何体的正视图并求出正视图面积;
(2)证明:平面CDE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点P(-x,-6),且cosα=$\frac{4}{5}$,则x的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=${(\frac{1}{2})^x}$,则f(-1),f(0),g(1)之间的大小关系是g(1)<f(0)<f(-1).(按从小到大的顺序排列)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.光明超市某种商品11月份(30天,11月1日为第一天)的销售价格P(单位:元)与时间t(单位:天,其中)组成有序实数对(t,P),点(t,P)落在如图所示的线段上.该商品日销售量Q(单位:件)与时间t(单位:天,其中t∈N)满足一次函数关系,Q与t的部分数据如表所示.
第t天10172130
Q(件)180152136100
(1)根据图象写出销售价格与时间t的函数关系式P=f(t).
(2)请根据表中数据写出日销售量Q与时间t的函数关系式Q=g(t).
(3)设日销售额为M(单位:元),请求出这30天中第几日M最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=ax2+bx+c,a,b,c均为正数,f(-1)=0,设(f(x))n=a0+a1x+a2x2+…+anxn+…+a2nx2n,当a0+a1+a2+…+a10=1024时,ac的最大值为1.

查看答案和解析>>

同步练习册答案