分析 由已知可得a-b+c=0,即b=a+c,则f(x)=(ax+1)(x+c),令n=5,x=1,则[(a+1)(1+c)]5=a0+a1+a2+…+a10=1024,即(a+1)(1+c)=4,结合基本不等式,可得ac的最大值.
解答 解:∵f(-1)=0,
∴a-b+c=0,即b=a+c,
∴f(x)=ax2+(a+c)x+c=(ax+1)(x+c),
由(f(x))n=a0+a1x+a2x2+…+anxn+…+a2nx2n,可得:
当n=5,x=1时,
[(a+1)(1+c)]5=a0+a1+a2+…+a10=1024,
故(a+1)(1+c)=4,
即ac+a+c=3,
即3≥ac+2$\sqrt{ac}$,
解得:$\sqrt{ac}$∈(0,1],
故ac的最大值为1,
故答案为:1
点评 本题考查的知识点是二次函数的图象和性质,基本不等式的应用,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a2>b2 | B. | $\frac{a}{b}$>1 | C. | lg(a-b)>0 | D. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤-1 | B. | a≥-1 | C. | a≥2 | D. | -1<a<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={(\frac{1}{2})^x}$ | B. | $y=\frac{2}{x}$ | C. | y=-2x3 | D. | $y=-\frac{1}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com