精英家教网 > 高中数学 > 题目详情
9.函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+2,则当x<0时,f(x)的表达式为(  )
A.-x+2B.x-2C.x+2D.-x-2

分析 设x<0,则-x>0,代入已知解析式得f(-x)的解析式,再利用奇函数的定义,求得函数f(x)(x<0)的解析式.

解答 解:设x<0,则-x>0
∴f(-x)=-(-x)+2=x+2
∵函数f(x)是定义域为R的奇函数,∴f(-x)=-f(x),
∴f(x)=-f(-x)=-x-2.
故选:D.

点评 本题主要考查了利用函数的奇偶性和对称性求函数解析式的方法,转化化归的思想方法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和Sn满足Sn=2an-1.若对任意正整数n都有λSn+1-Sn<0恒成立,则实数λ的取值范围为(  )
A.λ<1B.$λ<\frac{1}{2}$C.$λ<\frac{1}{3}$D.$λ<\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)写出函数f(x)(x∈R)的解析式.
(2)若函数g(x)=f(x)+(4-2a)x+2(x∈[1,2]),求函数g(x)的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“$φ=\frac{π}{2}$”是“函数f(x)=sin(2x+φ)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一只船自西向东匀速航行,上午10时到达灯塔P的南偏西75°距灯塔64海里的M处,下午2时到达这座灯塔东南方向的N处,则这只船航行的速度(单位:海里/小时)(  )
A.$32\sqrt{6}$B.$8\sqrt{6}$C.$32\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}的前n项和为Sn=2n+1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},则图中阴影部分所表示的集合等于(  )
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在边长为1的正△ABC中,D,E是边BC的两个三等分点(D靠近于点B),则$\overrightarrow{AD}•\overrightarrow{AE}$等于(  )
A.$\frac{1}{6}$B.$\frac{2}{9}$C.$\frac{13}{18}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{2}$sin2x+acosx在(0,π)上单调递增,则a的取值范围是(  )
A.(-∞,-1)B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案