精英家教网 > 高中数学 > 题目详情
4.设F1,F2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}$=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值为(  )
A.$\frac{5}{14}$B.$\frac{4}{9}$C.$\frac{5}{13}$D.$\frac{5}{9}$

分析 求得椭圆的a,b,c,运用椭圆的定义和三角形的中位线定理,可得PF2⊥x轴,|PF2|=$\frac{5}{3}$,|PF1|=$\frac{13}{3}$,计算即可所求值.

解答 解:椭圆$\frac{x^2}{9}+\frac{y^2}{5}$=1的a=3,b=$\sqrt{5}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=2,
由椭圆的定义可得|PF1|+|PF2|=2a=6,
由中位线定理可得PF2⊥x轴,
令x=2,可得y=±$\sqrt{5}$•$\sqrt{1-\frac{4}{9}}$=±$\frac{5}{3}$,
即有|PF2|=$\frac{5}{3}$,|PF1|=6-$\frac{5}{3}$=$\frac{13}{3}$,
则$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$=$\frac{5}{13}$.
故选:C.

点评 本题考查椭圆的定义,三角形的中位线定理的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足an=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{n}$(n∈N+),bn=a2n+1-an+1
(1)证明数列{bn}是递增数列;
(2)若bn>2m-3对一切大于1的自然数n成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(2x+φ)(其中φ是实数),若$f(x)≤|{f(\frac{π}{6})}|$对x∈R恒成立,且$f(\frac{π}{2})>f(π)$,则f(x)的单调递增区间是(  )
A.$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}](k∈Z)$B.[kπ,kπ$+\frac{π}{2}$](k∈Z)C.$[{kπ-\frac{π}{2},kπ}](k∈Z)$D.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图为某几何体的三视图,则该几何体的表面积为(  )
A.28B.30C.$18+4\sqrt{2}$D.$18+6\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:1两段,则此椭圆的离心率为(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{{4\sqrt{17}}}{17}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是一个正方体被一个平面截去一部分后得到的几何体的三视图,则该几何体的体积是原正方体的体积的(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知y=f(x),x∈D(D为此函数的定义域)同时满足下列两个条件:
(1)函数f(x)在D上单调递增或单调递减;
(2)存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数.请回答以下问题:
(1)判断函数f(x)=3x(x∈(0,+∞))是否为闭函数,并说明理由
(2)若y=k+$\sqrt{x}$(k<0)是闭函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,已知d=2,a3是a2与a5的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}^{2}+1}{2}$,记Tn=-b1+b2-b3+…+(-1)nbn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.针对当前市场的低迷,企业在不断开拓市场的同时,也在不断的加强产品质量的管理.我市某企业从生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求这些产品质量指标值落在区间[75,85]内的频率;
(2)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.

查看答案和解析>>

同步练习册答案