精英家教网 > 高中数学 > 题目详情
13.已知数列{an}的首项a1=2,${a_n}=\frac{{3-{a_{n-1}}}}{2}(n≥2)$,求数列{an}的通项公式及前n项和Sn

分析 由${a_n}=-\frac{1}{2}{a_{n-1}}+\frac{3}{2}$,设${a_n}+d=-\frac{1}{2}({a_{n-1}}+d)$,解得d可得,${a_n}-1=-\frac{1}{2}({a_{n-1}}-1)$,再利用等比数列的通项公式及其求和公式即可得出.

解答 解:∵${a_n}=-\frac{1}{2}{a_{n-1}}+\frac{3}{2}$,设${a_n}+d=-\frac{1}{2}({a_{n-1}}+d)$,
∴d=-1,
∴${a_n}-1=-\frac{1}{2}({a_{n-1}}-1)$,
∴{an-1}是等比数列,首项为1,
∴${a_n}={(-\frac{1}{2})^{n-1}}+1$,
∴${S_n}=\frac{2}{3}-\frac{2}{3}•{(-\frac{1}{2})^n}+n$.

点评 本题考查了等比数列的通项公式及其求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.“x=1”是“x2-2x+1=0”的 (  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(1,$\sqrt{2}$)在椭圆E:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1上,若斜率为$\sqrt{2}$的直线l与椭圆E交于B,C两点,当△ABC的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=$\sqrt{\frac{1}{2x-3}}$的定义域为($\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义一种运算$a?b=\left\{\begin{array}{l}a,a≤b\\ b,a>b\end{array}\right.$令f(x)=sinx?cosx(x∈R),则函数f(x)的最大值是(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.0D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个结论中假命题的个数是(  )
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线a,b是异面直线,则与a,b都相交的两条直线是异面直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为9.
(1)分别求出m,n的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差s${\;}_{甲}^{2}$和s${\;}_{乙}^{2}$,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且满足c=2,C=$\frac{π}{3}$.
(Ⅰ)若a=$\frac{2\sqrt{3}}{3}$,求角A的大小;
(Ⅱ)若△ABC的面积等于$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{x}{{{x^2}+4}}$,x∈(-2,2)
(1)判断f(x)的奇偶性并说明理由;
(2)求证:函数f(x)在(-2,2)上是增函数;
(3)若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案