【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
![]()
则下列判断中正确的是( )
A.该公司2018年度冰箱类电器销售亏损
B.该公司2018年度小家电类电器营业收入和净利润相同
C.该公司2018年度净利润主要由空调类电器销售提供
D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
【答案】ACD
【解析】
净利润占比小于0即为亏损,即可判断A;占比相同,但总收入与总净利润不同,即可判断B;空调类电器净利润占比超过
,显然主要净利润由其提供,可判断C;去掉亏损的冰箱类电器的销售数据,则总净利润提高,则空调类电器销售净利润占比降低,即可判断D.
对于选项A,因为
,说明2018年度冰箱类电器销售亏损,故A正确;
对于选项B,虽然小家电类营业收入占比和净利润占比相同,但总营业收入和总净利润不同,故小家电类电器营业收入和净利润不同,故B错误;
对于选项C,空调类电器净利润占比
,故C正确;
对于选项D,剔除冰箱类电器销售数据后,空调类电器销售净利润占比为
,显然有所降低,故D正确;
故选:ACD
科目:高中数学 来源: 题型:
【题目】已知抛物线
和圆
,倾斜角为45°的直线
过抛物线
的焦点,且
与圆
相切.
(1)求
的值;
(2)动点
在抛物线
的准线上,动点
在
上,若
在
点处的切线
交
轴于点
,设
.求证点
在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为
.
(1)求椭圆
的标准方程;
(2)若椭圆
的左焦点为
,过点
的直线
与椭圆
交于
两点,则在
轴上是否存在一个定点
使得直线
的斜率互为相反数?若存在,求出定点
的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
上一点
与椭圆右焦点的连线垂直于
轴,过椭圆
上一点
的直线
与椭圆
交于
两点(
均不在坐标轴上),设
为坐标原点,过
的射线
与椭圆
交于点
.
(1)若
,求实数
的值;
(2)当
为
时,若四边形
的面积为12,试求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,且圆
过椭圆
的上,下顶点.
(1)求椭圆
的方程.
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为棱
上的动点,且
.
(I)求证:
为直角三角形;
(II)试确定
的值,使得二面角
的平面角余弦值为
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com