【题目】如图,四棱锥
,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为棱
上的动点,且
.
(I)求证:
为直角三角形;
(II)试确定
的值,使得二面角
的平面角余弦值为
.
![]()
【答案】(1)见解析;(II)
.
【解析】试题分析:(1)取
中点
,连结
,以
为原点,
为
轴,
为
轴,
为
轴,建立空间直角坐标系,利用向量法能证明
为直角三角形;(2)设
,由
,得
,求出平面
的法向量和平面
的法向量,,根据空间向量夹角余弦公式能求出结果.
试题解析:(I)取
中点
,连结
,依题意可知
均为正三角形,所以
,
又
平面
平面
,
所以
平面
,
又
平面
,所以
,
因为
,所以
,即
,
从而
为直角三角形.
说明:利用
平面
证明正确,同样满分!
![]()
(II)[向量法]由(I)可知
,又平面
平面
,平面
平面
,
平面
,所以
平面
.
以
为原点,建立空间直角坐标系
如图所示,则
,![]()
由
可得点
的坐标![]()
所以
,
设平面
的法向量为
,则
,
即
解得
,
令
,得
,
显然平面
的一个法向量为
,
依题意
,
解得
或
(舍去),
所以,当
时,二面角
的余弦值为
.
[传统法]由(I)可知
平面
,所以
,
所以
为二面角
的平面角,
即
,
在
中,
,
所以![]()
,
由正弦定理可得
,即![]()
解得
,
又
,所以
,
所以,当
时,二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合计 |
| 1 |
![]()
(1)求出表中
及图中
的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,面
底面
,且
是边长为
的等边三角形,
,
在
上,且
∥面BDM.
(1)求直线PC与平面BDM所成角的正弦值;
(2)求平面BDM与平面PAD所成锐二面角的大小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
(
),设
为圆
与
轴负半轴的交点,过点
作圆
的弦
,并使弦
的中点恰好落在
轴上.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)延长
交曲线
于点
,曲线
在点
处的切线与直线
交于点
,试判断以点
为圆心,线段
长为半径的圆与直线
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
),曲线
在
处的切线方程为
.
(Ⅰ)求
,
的值;
(Ⅱ)证明:
;
(Ⅲ)已知满足
的常数为
.令函数
(其中
是自然对数的底数,
),若
是
的极值点,且
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取
名学生的数学成绩,制成表所示的频率分布表.
组号 | 分组 | 频数 | 频率 |
第一组 |
|
|
|
第二组 |
|
|
|
第三组 |
|
|
|
第四组 |
|
|
|
第五组 |
|
|
|
合计 |
|
| |
(1)求
、
、
的值;
(2)若从第三、四、五组中用分层抽样方法抽取
名学生,并在这
名学生中随机抽取
名学生与张老师面谈,求第三组中至少有
名学生与张老师面谈的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现
症状的情况,做接种试验,试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现
症状的概率为
,假设每次接种后当天是否出现
症状与上次接种无关.
(1)若出现
症状即停止试验,求试验至多持续一个接种周期的概率;
(2)若在一个接种周期内出现3次
症状,则这个接种周期结束后终止试验,试验至多持续3个周期,设接种试验持续的接种周期数为
,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com