【题目】已知圆: (),设为圆与轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.
科目:高中数学 来源: 题型:
【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点为的中点.
(Ⅰ)求证: 面 ;
(Ⅱ)在边上找一点,使∥面,
并求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)一块长为、宽为的长方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为的函数;
(Ⅱ)试求方盒容积V的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为 .
(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆Cx2+y2+2x﹣4y+3=0
(1)已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;
(2)求经过原点且被圆C截得的线段长为2的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形, 为棱上的动点,且.
(I)求证: 为直角三角形;
(II)试确定的值,使得二面角的平面角余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.
(1)求该几何体的体积;
(2)求该几何体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2mx+m2+4m﹣2.
(1)若函数f(x)在区间[0,1]上是单调递减函数,求实数m的取值范围;
(2)若函数f(x)在区间[0,1]上有最小值﹣3,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com