精英家教网 > 高中数学 > 题目详情

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

【答案】(1)64;(2)

【解析】试题分析:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为86的矩形,正侧面及其相对侧面均为底边长为8,高为的等腰三角形,左、右侧面均为底边长为6、高为的等腰三角形,分析出图形之后,再利用公式求解即可.

试题解析:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的

四棱锥V-ABCD

1

2)该四棱锥有两个侧面VADVBC是全等的等腰三角形,且BC边上的高为,另两个侧面VABVCD也是全等的等腰三角形,

AB边上的高为

因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN= ,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左顶点、右焦点,点为椭圆上一动点,当轴时, .

(1)求椭圆的离心率;

(2)若椭圆存在点,使得四边形是平行四边形(点在第一象限),求直线的斜率之积;

(3)记圆为椭圆的“关联圆”. 若,过点作椭圆的“关联圆”的两条切线,切点为,直线的横、纵截距分别为,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ),设为圆轴负半轴的交点,过点作圆的弦,并使弦的中点恰好落在轴上.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)延长交曲线于点,曲线在点处的切线与直线交于点,试判断以点为圆心,线段长为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 1, 的中点, 为线段上的动点,过点A、P、Q的平面截该正方体所得的截面记为.则下列命题正确的是__________(写出所有正确命题的编号).

①当时, 为四边形;②当时, 为等腰梯形;③当时, 为六边形;④当时, 的面积为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取学生的数学成绩,制成表所示的频率分布.

组号

分组

频数

频率

第一组

第二组

第三组

第四

第五组

合计

(1)值;

(2)若从第三、四、五中用分层抽样方法抽取学生,在这学生中随机抽取学生与张老师面谈求第三组中至少有学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)请画出该几何体的三视图;
(2)求四棱锥B﹣CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(﹣3,4)
(1)若l与直线y=﹣2x+5平行,求其一般式方程;
(2)若l与直线y=﹣2x+5垂直,求其一般式方程;
(3)若l与两个坐标轴的截距之和等于12,求其一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划销售某种产品,先试销该产品天,对这天日销售量进行统计,得到频率分布直方图如图.

(Ⅰ)若已知销售量低于50的天数为23,求

(Ⅱ)厂家对该超市销售这种产品的日返利方案为:每天固定返利45元,另外每销售一件产品,返利3元;频率估计为概率.依此方案,估计日返利额的平均值.

查看答案和解析>>

同步练习册答案