精英家教网 > 高中数学 > 题目详情

【题目】已知直线l过点A(﹣3,4)
(1)若l与直线y=﹣2x+5平行,求其一般式方程;
(2)若l与直线y=﹣2x+5垂直,求其一般式方程;
(3)若l与两个坐标轴的截距之和等于12,求其一般式方程.

【答案】解:(1)设直线l的方程为:y=﹣2x+m,把点A(﹣3,4)代入可得:4=﹣2×(﹣3)+m,解得m=﹣2,可得直线l的方程为:2x+y+2=0.
(2)设直线l的方程为:y=x+n,把点A(﹣3,4)代入可得:4=×(﹣3)+n,解得n=,可得直线l的方程为:x﹣2y+11=0.
(3)设直线l的方程为:=1,把点A(﹣3,4)代入可得+=1,与a+b=12联立解得:,或
可得直线l的方程为:x+3y﹣9=0或4x﹣y+16=0.
【解析】(1)设直线l的方程为:y=﹣2x+m,把点A(﹣3,4)代入解得m即可得出方程.
(2)设直线l的方程为:y=x+n,把点A(﹣3,4)代入解得n即可得出方程.
(3)设直线l的方程为:=1,把点A(﹣3,4)代入可得+=1,与a+b=12联立解得a,b即可得出方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本题满分12分一块长为、宽为的长方形铁片铁片的四角截去四个边长均为的小正方形然后做成一个无盖方盒

试把方盒的容积V表示为的函数

试求方盒容积V的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2mx+m2+4m﹣2.
(1)若函数f(x)在区间[0,1]上是单调递减函数,求实数m的取值范围;
(2)若函数f(x)在区间[0,1]上有最小值﹣3,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点轴平行的直线与抛物线交于点.

(1)求点的坐标;

(2)求证:直线恒过定点

(3)在(2)的条件下过轴做垂线,垂足为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是(  )

A.
B.2π
C.
D.3π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个的矩形),被截取一角(即), ,平面平面 .

(1)证明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

同步练习册答案