(本题14分)
已知函数(其中常数a,b∈R),是奇函数.
(1)求的表达式;
(2)讨论的单调性,并求在区间[1,2]上的最大值和最小值.
科目:高中数学 来源:2014届海南省高二上期末考试文科数学试卷(解析版) 题型:解答题
(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三回头考联考理科数学试卷(解析版) 题型:解答题
(本题14分)口袋内有()个大小相同的球,其中有3个红球和个白球.已知从
口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于。
(Ⅰ)求和;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三第一次月考文科数学试卷(解析版) 题型:解答题
(本题14分)向量,设函数.
(1)求的最小正周期与单调递减区间;
(2)在中,分别是角的对边,若的面积
为,求a的值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省无锡市高一下期中数学(艺术)试卷(解析版) 题型:解答题
(本题14分)已知a,b实数,设函数.
(1)若关于x的不等式的解集为,求实数的值;
(2) 设b为已知的常数,且,求满足条件的a的范围.
查看答案和解析>>
科目:高中数学 来源:2010年广东省高三第一次月考理科数学卷 题型:解答题
(本题14分)
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(1)求异面直线A1M和C1D1所成的角的正切值;
(2)证明:直线BM⊥平面A1B1M1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com