精英家教网 > 高中数学 > 题目详情
9.设复数z,ω满足:z=(1+2i)ω,|ω|=1(i为虚数单位),求|z|.

分析 由已知得|z|=|1+2i|•|ω|,由此能求出结果.

解答 解:∵复数z,ω满足:z=(1+2i)ω,|ω|=1(i为虚数单位),
∴|z|=|1+2i|•|ω|
=$\sqrt{5}$.

点评 本题考查复数的模的求法,是基础题,解题时要认真审题,注意复数的模的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.平面直角坐标系中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的两点M,N关于原点对称,P为椭圆上异于M,N的两点,若直线PM,PN的斜率分别为k1,k2(k1,k2存在且不为0),椭圆的离心率$\frac{\sqrt{2}}{2}$.
(1)求k1•k2的值;
(2)若F1,F2是椭圆C左、右焦点,且直线PF1交椭圆C于Q,若△PF2Q的面积最大值为$\sqrt{2}$时,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}的前n项和为Sn,若S3=2,S9=146,求S6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列x,3x+3,6x+6,…的第4项等于(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=Asin(ωx+φ)(x∈R,A,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)图象上一个最高点为P(2,2),由这个最高点到相邻最低点间的曲线与x轴相交于点Q(6,0)
(1)求这个函数的解析式;
(2)写出整个函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设过点M(-3,-3)的直线l与圆x2+y2+4y-21=0相交于A、B两点.
(1)若|AB|=4$\sqrt{5}$,求直线l的方程;
(2)若线段AB被点M平分,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若a=$\frac{\sqrt{5}}{2}$b,A=2B,则cosB等于(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x2+mln(x+1).
(1)若m=-1,试比较当x∈(0,+∞)时,f(x)与x3的大小;
(2)证明:对任意的正整数n,不等式e0+e-1×4+e-2×9+…${e}^{(1-n){n}^{2}}$<$\frac{n(n+3)}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将下列函数的最小正周期T填在空格内:
(1)y=2cos(2x+$\frac{π}{3}$),T=π
(2)y=sinx+$\sqrt{3}$cosx,T=2π
(3)y=cos2$\frac{π}{2}$x+1,T=2
(4)y=sin4x-cos4x,T=π
(5)y=sin2x+2sinxcosx,T=π
(6)y=sin4x+cos4x,T=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案