精英家教网 > 高中数学 > 题目详情
3.已知空间四面体ABCD的体积是V,点O是空间上的一点,且满足$\overrightarrow{OA}$+($\sqrt{2}$-1)$\overrightarrow{OB}$+sinα$\overrightarrow{OC}$+cosα$\overrightarrow{OD}$=$\overrightarrow{0}$,其中α∈(0,$\frac{π}{2}$),则VO-ACD的最小值为$\frac{2-\sqrt{2}}{4}V$,VO-ABD+VO-ABC的最大值为$\frac{1}{2}V$,VO-BCD的最小值为$\frac{\sqrt{2}}{4}V$.

分析 由题意画出图形,延长BO交平面ACD于点M,则$\overrightarrow{OM}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OC}$+λ3$\overrightarrow{OD}$,且λ123=1.把已知向量等式变形,得到$\overrightarrow{BO}$=$\frac{1+sinα+cosα}{\sqrt{2}-1}\overrightarrow{OM}$,然后利用三角函数求得VO-ACD的最小值,同理求出VO-BCD的最小值,则VO-ABD+VO-ABC的最大值可求.

解答 解:如图,延长BO交平面ACD于点M,则$\overrightarrow{OM}$=λ1$\overrightarrow{OA}$+λ2$\overrightarrow{OC}$+λ3$\overrightarrow{OD}$,且λ123=1.
根据题意,$\overrightarrow{OA}$+($\sqrt{2}$-1)$\overrightarrow{OB}$+sinα$\overrightarrow{OC}$+cosα$\overrightarrow{OD}$=$\overrightarrow{0}$,
则$\overrightarrow{BO}=\frac{1}{\sqrt{2}-1}$($\overrightarrow{OA}+sinα\overrightarrow{OC}+cosα\overrightarrow{OD}$)
=$\frac{1+sinα+cosα}{\sqrt{2}-1}(\frac{1}{1+sinα+cosα}\overrightarrow{OA}+\frac{sinα}{1+sinα+cosα}\overrightarrow{OC}+\frac{cosα}{1+sinα+cosα}\overrightarrow{OD})$ 
=$\frac{1+sinα+cosα}{\sqrt{2}-1}\overrightarrow{OM}$,
由于$\frac{1+sinα+cosα}{\sqrt{2}-1}=\frac{\sqrt{2}sin(α+\frac{π}{4})+1}{\sqrt{2}-1}≤\frac{\sqrt{2}+1}{\sqrt{2}-1}$,
∴$|\overrightarrow{BO}|≤\frac{\sqrt{2}+1}{\sqrt{2}-1}|\overrightarrow{OM}|$,
当$\overrightarrow{BO}=\frac{\sqrt{2}+1}{\sqrt{2}-1}\overrightarrow{OM}$时,$\frac{OB}{BM}$最大,$\frac{OM}{BM}$最小,因此VO-ACD最小,
此时α=$\frac{π}{4}$,
此时,$\frac{OB}{BM}=\frac{\sqrt{2}+1}{2\sqrt{2}},\frac{OM}{BM}=\frac{\sqrt{2}-1}{2\sqrt{2}}$=$\frac{2-\sqrt{2}}{4}$,
故VO-ACD的最小为$\frac{2-\sqrt{2}}{4}V$;
同理,延长AO交平面BCD于点N,则$\overrightarrow{ON}={λ}_{1}\overrightarrow{OB}+{λ}_{2}\overrightarrow{OC}+{λ}_{3}\overrightarrow{OD}$,且λ123=1,
由$\overrightarrow{OA}$+($\sqrt{2}$-1)$\overrightarrow{OB}$+sinα$\overrightarrow{OC}$+cosα$\overrightarrow{OD}$=$\overrightarrow{0}$,得
$\overrightarrow{AO}$=($\sqrt{2}$-1)$\overrightarrow{OB}$+sinα$\overrightarrow{OC}$+cosα$\overrightarrow{OD}$
=($\sqrt{2}-1+sinα+cosα$)[$\frac{\sqrt{2}-1}{\sqrt{2}-1+sinα+cosα}\overrightarrow{OB}+\frac{sinα}{\sqrt{2}-1+sinα+cosα}\overrightarrow{OC}+\frac{cosα}{\sqrt{2}-1+sinα+cosα}\overrightarrow{OD}$]
=$(\sqrt{2}-1+sinα+cosα)\overrightarrow{ON}$,
由于$\sqrt{2}-1+sinα+cosα=\sqrt{2}sin(α+\frac{π}{4})+\sqrt{2}-1$$≤2\sqrt{2}-1$,
∴$|\overrightarrow{AO}|≤(2\sqrt{2}-1)|\overrightarrow{ON}|$,
当$\overrightarrow{AO}=(2\sqrt{2}-1)\overrightarrow{ON}$时,$\frac{OA}{AN}$最大,$\frac{ON}{AN}$最小,因此VO-BCD最小,
此时$α=\frac{π}{4}$,
此时,$\frac{OA}{AN}=\frac{2\sqrt{2}-1}{2\sqrt{2}}$,$\frac{ON}{AN}=\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
故VO-BCD的最小值为$\frac{\sqrt{2}}{4}V$;
∴VO-ABD+VO-ABC的最大值为$V-\frac{2-\sqrt{2}}{4}V-\frac{\sqrt{2}}{4}V=\frac{1}{2}V$.
故答案为:$\frac{2-\sqrt{2}}{4}V$;$\frac{1}{2}V$;$\frac{\sqrt{2}}{4}V$.

点评 本题考查棱柱、棱锥及棱台体积的求法,考查数学转化思想方法,训练了共面向量基本定理的应用,训练了利用三角函数求最值,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{x}$+2($\overrightarrow{a}$+$\overrightarrow{x}$)=$\overrightarrow{0}$,则(  )
A.$\overrightarrow{x}$=$\overrightarrow{a}$B.$\overrightarrow{x}$与$\overrightarrow{a}$反向C.|$\overrightarrow{x}$|=|$\overrightarrow{a}$|且$\overrightarrow{x}$与$\overrightarrow{a}$反向D.$\overrightarrow{x}$与$\overrightarrow{a}$是相反向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C所对的边分别为a,b,c,若向量$\overrightarrow{m}$=(a,b+c),$\overrightarrow{n}$=(cosC+$\sqrt{3}$sinC,-1)相互垂直.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简$\frac{sin(π+α)}{cos(π-α)tan(2π-α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{sin(x+α),x≤0}\\{cos(x+α),x>0}\end{array}\right.$ 则“$α=\frac{π}{4}$”是“函数f(x)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若定义在R上的可导函数y=f(x)对于任意的x满足f(2-x)+f(x)=0,当x>1时恒有$\frac{f′(x)}{x-3}>0$,在下列结论中:①函数y=f(x+1)是奇函数;②若-3≤x1<x2≤3,且x1+x2>2,则f(x1+x2)<0;③函数y=f(x)有三个零点,所有正确结论的序号是(  )
A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于函数f(x),g(x)满足:对任意x∈R,都有f(x2-2x+3)=g(x),若关于x的方程g(x)+sin$\frac{π}{2}$x=0只有5个根,则这5个根之和为(  )
A.5B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出以下命题:
①当x>0时,f(x)=ex(1-x);
②f(x)有3个零点;
③f(x)>0的解集为(-1,0)∪(1,+∞);
④?x1,x2∈R,都有|f(x1)-f(x2)|≤2,
其中正确命题的序号是②③④(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一几何体的三视图是如图所示的三个直角边为2的等腰直角三角形,则该几何体的表面积为(  )
A.8B.4$\sqrt{3}$+4C.4$\sqrt{2}$+4D.6+2$\sqrt{3}$

查看答案和解析>>

同步练习册答案