精英家教网 > 高中数学 > 题目详情

【题目】某医疗研究所开发一种新药如果成人按规定的剂量服用据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.

(1)写出服药后yt之间的函数关系式;

(2)据测定每毫升血液中含药量不少于4 μg时治疗疾病有效假若某病人一天中第一次服药为上午700问:一天中怎样安排服药时间(4)效果最佳?

【答案】(1)y;(2)第二次服药应在1100第三次服药应在1600第四次服药应在2030.

【解析】试题分析(1)根据图象写出分段函数图象;(2)由题意可知,第二次服药满足t1=4,第三次服药则此时血液中含药量应为前两次服药后的含药量的和,即有-t2 (t2-4)+=4,第四次服药,则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和,即有- (t3-4)+ (t3-9)+=4,解得答案

试题解析:

(1)依题意得y

(2)设第二次服药时在第一次服药后t1小时,则-t1=4,解得t1=4,因而第二次服药应在11:00.

设第三次服药在第一次服药后t2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-t2 (t2-4)+=4,解得t2=9,故第三次服药应在16:00.

设第四次服药在第一次服药后t3小时(t3>10),则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和,即有- (t3-4)+ (t3-9)+=4,解得t3=13.5,故第四次服药应在20:30.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 上一点, 平面

(Ⅰ)证明: 平面

(Ⅱ)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为矩形,D

的中点,AC⊥平面BCC1B1

(Ⅰ)证明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的长;

(2)求三棱锥C-DB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考江苏卷】已知函数.设.

(1)求方程的根;

(2)若对任意,不等式恒成立,求实数的最大值;

(3)若,函数有且只有1个零点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本,对高一年级的100名学生的成绩进行统计,并按 分组,得到成绩分布的频率分布直方图(如图)。

(1)若规定60分以上(包括60分)为合格,计算高一年级这次竞赛的合格率;

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;

(3)若高二年级这次竞赛的合格率为,由以上统计数据填写下面列联表,并问是否有的把握认为“这次知识竞赛的成绩与年级有关”。

高一

高二

合计

合格人数

不合格人数

合计

附:参考数据与公式

高一

高二

合计

合格人数

a

b

a+b

不合格人数

c

d

c+d

合计

a+c

b+d

n

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若有穷数列是正整数),满足是正整数,且),就称该数列为“对称数列”。例如,数列与数列都是“对称数列”.

(1)已知数列是项数为9的对称数列,且,,,,成等差数列, ,试求 ,并求前9项和.

(2)若是项数为的对称数列,且构成首项为31,公差为的等差数列,数列项和为,则当为何值时, 取到最大值?最大值为多少?

(3)设项的“对称数列”,其中是首项为1,公比为2的等比数列.求项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为为圆心4为半径;又直线的极坐标方程为

(Ⅰ)求直线和圆的普通方程;

试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在的展开式中,第5项的系数与第3项的系数之比是563

1)求展开式中的所有有理项;

2)求展开式中系数绝对值最大的项.

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列5个命题中正确命题的个数是( )

①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;

②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;

③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;

④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为

⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.

A.2 B.3

C.4 D.5

查看答案和解析>>

同步练习册答案