精英家教网 > 高中数学 > 题目详情
7.函数f(x)=ex+3x的零点所在的一个区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,-$\frac{1}{2}$)D.($\frac{1}{2}$,1)

分析 根据函数f(x)=ex+3x是R上的连续函数,且单调递增,f(-$\frac{1}{2}$)f(0)<0,结合函数零点的判定定理,可得结论.

解答 解:∵函数f(x)=ex+3x是R上的连续函数,且单调递增,
f(-$\frac{1}{2}$)=e-$\frac{1}{2}$+3×(-$\frac{1}{2}$)=$\frac{1}{\sqrt{e}}$-$\frac{3}{2}$<0,f(0)=e0+0=1>0,
∴f(-$\frac{1}{2}$)f(0)<0,
∴f(x)=ex+3x的零点所在的一个区间为(-$\frac{1}{2}$,0),
故选:B.

点评 本题考查了函数零点的概念与零点定理的应用,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若数列{an}中,an=46-3n,则当Sn取最大值时,n=(  )
A.14B.15C.15或16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}的前n项和为Sn,满足a1=1,Sn=an+1+n,则其通项公式为${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{1-{2}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≥1}\\{(4-\frac{a}{2})x+2,x<1}\end{array}\right.$是R上的单调递增函数,则实数a的取值范围是(  )
A.(1,+∞)B.[1,8)C.(4,8)D.[4,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各组中的两个函数是同一函数的为(  )
(1)f(x)=1,g(x)=x0      
(2)f(x)=$\root{3}{{x}^{3}}$,g(x)=$\frac{{x}^{2}}{x}$
(3)f(x)=lnxx,g(x)=elnx
(4)f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$.
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个关系式中,正确的是(  )
A.∅∈{a}B.a∉{a,b}C.b⊆{a,b}D.{a}⊆{a,b}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x+x=0的根所在的区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的公比为正数,且a4•a8=2a52,a2=1,则a1=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)为奇函数,且f(x)在(-∞,0)内是增函数,f(-2)=0,则xf(x)>0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步练习册答案