精英家教网 > 高中数学 > 题目详情
2.如图,正四面体V-ABC中,D是棱VC的中点,则AD与面ABC所成角的正弦值为$\frac{\sqrt{2}}{3}$.

分析 设底面ABC的中心为F,则D在底面的射影为CF的中点G,于是∠DAG为所求线面角,设正四面体的棱长为2,求出AD和DG即可得出答案.

解答 解:取AB的中点E,连接CE,VE,
过V作VF⊥平面ABC,则F为△ABC的中心,
设正四面体的棱长为2,则CE=$\sqrt{3}$,CF=$\frac{2}{3}CE$=$\frac{2\sqrt{3}}{3}$,
取CF的中点G,连接DG,则DG∥VF,
∴DG⊥平面ABC,∴∠DAG为AD与平面ABC所成的角,
∵VF=$\sqrt{V{C}^{2}-C{F}^{2}}$=$\frac{2\sqrt{6}}{3}$,∴DG=$\frac{1}{2}$VF=$\frac{\sqrt{6}}{3}$,
又AD=CE=$\sqrt{3}$,
∴sin∠DAG=$\frac{DG}{AD}$=$\frac{\sqrt{2}}{3}$.
故答案为:$\frac{\sqrt{2}}{3}$.

点评 本题考查了直线与平面所成角的计算,作出所求的线面角是解题关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x2+x-6≤0,则命题¬p是(  )
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a<-1”是“直线ax+2y-1=0的斜率大于1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{m}$-y2=1(m>0)的实轴长为6,则m等于(  )
A.3B.6C.9D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角$θ>\frac{π}{4}$,则下面叙述正确的是(  )
A.¬p为:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角θ>$\frac{π}{4}$
B.¬p为:?a∈(-∞,-2),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角$θ>\frac{π}{4}$
C.¬p:?a∈[2,+∞),曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的倾斜角θ≤$\frac{π}{4}$
D.¬p是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≤0)}\\{lnx(x>0)}\end{array}\right.$,则f(f($\frac{1}{2}$))=(  )
A.$\sqrt{e}$B.ln$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有$\frac{{x}_{2}f({x}_{1})-{x}_{1}f({x}_{2})}{{x}_{2}-{x}_{1}}$<0,记a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(sin\frac{π}{6})}{sin\frac{π}{6}}$,c=$\frac{f(lo{g}_{π}3)}{lo{g}_{π}3}$,则a、b、c的大小关系是b<c<a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:?x∈R,x2+1>0,则¬p为(  )
A.?x∈R,x2+1>0B.?x0∈R,x${\;}_{0}^{2}$+1≤0
C.?x0∈R,x${\;}_{0}^{2}$+1<0D.?x0∈R,x${\;}_{0}^{2}$+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别为内角A,B,C所对的边长,已知a=1,b=2,cosC=$\frac{1}{4}$.
(1)求△ABC的周长;
(2)求cos(A-C)的值.

查看答案和解析>>

同步练习册答案