精英家教网 > 高中数学 > 题目详情
12.已知命题p:?x∈R,x2+x-6≤0,则命题¬p是(  )
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,
所以,命题p:?x∈R,x2+x-6≤0,则命题¬p是?x∈R,x2+x-6>0.
故选:B.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-2≤x≤1},集合B={x|(x-a)(x-a-4)>0}
(1)当a=0时,求A∪B
(2)命题p:x∈A,命题q:x∈B,若p是q成立的充分不必要条件,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sinx,x∈[0,2π].
(1)求f(x)的最大值及此时x的取值;
(2)求使$f(x)≥\frac{{\sqrt{2}}}{2}$的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的不等式|a-2x|>x-2在[0,2]上恒成立,则a的取值范围是(-∞,0)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,如图是根据调查结果得到的2×2列联表.
(Ⅰ)补全2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知有5名“超级体育迷”,其中3名男性2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
非体育迷体育迷合计
3015
451055
合计100
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量
 P(K2≥k) 0.05 0.01
 k 3.841 6.0635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为(  )
A.$\frac{6}{25}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某农村合作联社欲种植一种农作物,有A、B两个品种供选择,根据前期在8块实验田中的种植试验,得出A、B两个品种的每公顷产量如下(单位:kg/hm2
品种A403397390404388400412406
品种B419403412418408423400413
(Ⅰ)分别求出品种A和品种B的每公顷产量的样本平均数和方差;根据试验结果,你认为应该种植哪一品种;
(Ⅱ)如果联合社在一块耕地上选择种植A品种作物,其中种植成本为1000元,若根据试验得知A品种作物的市场价格和这块耕地上的产量均具有随机性且互不影响,其具体情况如表:
A品种作物产量(kg)300500
概率0.50.5
A品种作物市场价格(元/kg)610
概率0.40.6
求在这块耕地上种植A品种作物利润为2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x2-1)的定义域为(-2,2),函数f(x)定义域为[-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,正四面体V-ABC中,D是棱VC的中点,则AD与面ABC所成角的正弦值为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

同步练习册答案