7£®µçÊÓ´«Ã½¹«Ë¾ÎªÁËÁ˽âijµØÇøµçÊÓ¹ÛÖÚ¶ÔijÀàÌåÓý½ÚÄ¿µÄÊÕÊÓÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100Ãû¹ÛÖÚ½øÐе÷²é£¬ÆäÖÐÅ®ÐÔÓÐ55Ãû£®½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓý½ÚĿʱ¼ä²»µÍÓÚ40·ÖÖӵĹÛÖÚ³ÆÎª¡°ÌåÓýÃÔ¡±£¬ÈçͼÊǸù¾Ýµ÷²é½á¹ûµÃµ½µÄ2¡Á2ÁÐÁª±í£®
£¨¢ñ£©²¹È«2¡Á2ÁÐÁª±í£¬²¢¾Ý´Ë×ÊÁÏÅжÏÄãÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ¿
£¨¢ò£©½«ÈÕ¾ùÊÕ¿´¸ÃÌåÓýÏîÄ¿²»µÍÓÚ50·ÖÖӵĹÛÖÚ³ÆÎª¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÒÑÖªÓÐ5Ãû¡°³¬¼¶ÌåÓýÃÔ¡±£¬ÆäÖÐ3ÃûÄÐÐÔ2ÃûÅ®ÐÔ£¬Èô´Ó¡°³¬¼¶ÌåÓýÃÔ¡±ÖÐÈÎÒâѡȡ2ÈË£¬ÇóÖÁÉÙÓÐ1ÃûÅ®ÐÔ¹ÛÖڵĸÅÂÊ£®
·ÇÌåÓýÃÔÌåÓýÃԺϼÆ
ÄÐ3015
Ů451055
ºÏ¼Æ100
ÓÉK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿
 P£¨K2¡Ýk£© 0.05 0.01
 k 3.841 6.0635

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒâÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨¢ò£©ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬Ìîд2¡Á2ÁÐÁª±íÈçÏ£º

·ÇÌåÓýÃÔÌåÓýÃԺϼÆ
ÄÐ301545
Ů451055
ºÏ¼Æ7525100
½«2¡Á2ÁÐÁª±íÖеÄÊý¾Ý´úÈ빫ʽ¼ÆË㣬
µÃ$k=\frac{{100¡Á{{£¨{30¡Á10-45¡Á15}£©}^2}}}{75¡Á25¡Á45¡Á55}=\frac{100}{33}¡Ö3.030$£¬
ÒòΪ3.030£¼3.841£¬ËùÒÔÎÒÃÇûÓÐ95%µÄ°ÑÎÕÈÏΪ¡°ÌåÓýÃÔ¡±ÓëÐÔ±ðÓйأ»
£¨¢ò£©ÓÃA¡¢B¡¢C±íʾ3ÃûÄÐÉú£¬d¡¢e±íʾ2ÃûÅ®Éú£¬Ôò´Ó5ÈËÖÐÈÎÈ¡2ÈËÖУ¬
»ù±¾Ê¼þΪAB¡¢AC¡¢Ad¡¢Ae¡¢BC¡¢Bd¡¢Be¡¢Cd¡¢Ce¡¢de¹²10ÖÖ£¬
ÖÁÉÙÓÐ1ÈËÊÇÅ®ÐԵĻù±¾Ê¼þÊÇAd¡¢Ae¡¢Bd¡¢Be¡¢Cd¡¢Ce¡¢de¹²7ÖÖ£¬
¹ÊËùÇóµÄ¸ÅÂÊֵΪP=$\frac{7}{10}$£®

µãÆÀ ±¾Ì⿼²éÁËÁÐÁª±íÓë¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¼¯ºÏA={x|x+1£¾0}£¬B={-2£¬-1£¬0£¬1}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®{-2}B£®{-2£¬-1}C£®{-1£¬0£¬1}D£®{0£¬1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎªÁ˽âÐķμ²²¡ÊÇ·ñÓëÄêÁäÏà¹Ø£¬ÏÖËæ»ú³éÈ¡ÁË40ÃûÊÐÃñ£¬µÃµ½Êý¾ÝÈçÏÂ±í£º
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
´óÓÚ40Ëê16
СÓÚµÈÓÚ40Ëê12
ºÏ¼Æ40
ÒÑÖªÔÚÈ«²¿µÄ40ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½²»»¼Ðķμ²²¡µÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»¾Ý´ËÊý¾ÝÅжÏÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
£¨2£©£¨2£©ÒÑÖª´óÓÚ40Ë껼Ðķμ²²¡ÊÐÃñÖУ¬¾­¼ì²éÆäÖÐÓÐ4ÃûÖØÖ¢»¼Õߣ¬×¨¼Ò½¨ÒéÖØÖ¢»¼ÕßסԺÖÎÁÆ£¬ÏÖ´ÓÕâ16Ãû»¼ÕßÖÐÑ¡³öÁ½Ãû£¬¼ÇÐèסԺÖÎÁƵÄÈËÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÕýËÄÀą̂µÄÁ½µ×Ãæ±ß³¤·Ö±ðΪ1cmºÍ2cm£¬ËüµÄ²àÃæ»ýÊÇ$3\sqrt{5}c{m^2}$£¬Çó¸ÃÕýËÄÀą̂µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÊýÁÐ0£¬$\frac{2}{3}$£¬$\frac{4}{5}$£¬$\frac{6}{7}$¡­µÄÒ»¸öͨÏʽΪ£¨¡¡¡¡£©
A£®an=$\frac{2£¨n-1£©}{2n-1}$B£®an=$\frac{n-1}{2n+1}$C£®an=$\frac{n-1}{n+1}$D£®an=$\frac{2n}{3n+1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬x2+x-6¡Ü0£¬ÔòÃüÌâ©VpÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2+x-6£¾0B£®?x¡ÊR£¬x2+x-6£¾0C£®?x¡ÊR£¬x2+x-6£¾0D£®?x¡ÊR£¬x2+x-6£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=t}\\{y=1-\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ4¦Ñcos2¦È-sin¦È=0£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬P£¨0£¬1£©£¬Çó||PA|-|PB||£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÅ×ÎïÏßy2=4x£¬A£¬BÊÇÅ×ÎïÏßµÄÁ½µã£¨·Ö±ðÔÚxÖáÁ½²à£©£¬AB=6£¬¹ýA£¬B·Ö±ð×÷Å×ÎïÏßµÄÇÐÏßl1£¬l2£¬l1Óël2½»ÓÚµãQ£¬ÇóÈý½ÇÐÎABQÃæ»ýµÄ×î´óÖµ£¨¡¡¡¡£©
A£®$\frac{27}{2}$B£®8C£®12$\sqrt{3}$D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÃüÌâp£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç$¦È£¾\frac{¦Ð}{4}$£¬ÔòÏÂÃæÐðÊöÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®©VpΪ£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç¦È£¾$\frac{¦Ð}{4}$
B£®©VpΪ£º?a¡Ê£¨-¡Þ£¬-2£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç$¦È£¾\frac{¦Ð}{4}$
C£®©Vp£º?a¡Ê[2£¬+¡Þ£©£¬ÇúÏßf£¨x£©=$\frac{{x}^{2}+a}{x+1}$Ôڵ㣨1£¬f£¨1£©£©´¦ÇÐÏßµÄÇãб½Ç¦È¡Ü$\frac{¦Ð}{4}$
D£®©VpÊǼÙÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸