| A. | $\sqrt{e}$ | B. | ln$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
分析 推导出f($\frac{1}{2}$)=$ln\frac{1}{2}$,从而f(f($\frac{1}{2}$))=f(ln$\frac{1}{2}$),由此能求出结果.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≤0)}\\{lnx(x>0)}\end{array}\right.$,
∴f($\frac{1}{2}$)=$ln\frac{1}{2}$,
f(f($\frac{1}{2}$))=f(ln$\frac{1}{2}$)=${e}^{ln\frac{1}{2}}$=$\frac{1}{2}$.
故选:C.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{25}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{5}{2}$ | C. | 16 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a-\overrightarrow b=\overrightarrow 0$ | B. | ${\overrightarrow a^2}={\overrightarrow b^2}$ | C. | $\overrightarrow a•\overrightarrow b=1$ | D. | $\overrightarrow a•\overrightarrow b=0$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com