精英家教网 > 高中数学 > 题目详情
18.设实数x和y满足约束条件$\left\{\begin{array}{l}{x+y≤10}\\{x-y≤2}\\{x≥4}\end{array}\right.$,则z=2x+3y的最大值为(  )
A.26B.24C.16D.14

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=-$\frac{2}{3}$x+$\frac{z}{3}$,
平移直线y=-$\frac{2}{3}$x+$\frac{z}{3}$,由图象可知当直线y=-$\frac{2}{3}$x+$\frac{z}{3}$经过点A时,直线y=-$\frac{2}{3}$x+$\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=4}\\{x+y=10}\end{array}\right.$,解得A(4,6).
此时z的最大值为z=2×4+3×6=26,
故选:A.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+1|-|2x-3|.
(Ⅰ)在图中画出y=f(x)的图象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有5人排成一排照相,其中有男、女医生各1人,男、女教师各1人,男运动员1人,若同职业的人互不相邻,且女士相邻,则不同的站排方式共有(  )
A.28B.30C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)证明:f(x)在(1,+∞)上是增函数;
(2)设F(x)=f(x)-g(x),当x∈[1,+∞)时,F(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=x3-ax在x=1处有极值,则实数a为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.把复数z的共轭复数记作$\overline z$,已知$(1+2i)\overline z=4+3i$,求z及$\frac{z}{\overline z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,顶点A(2,1),B(-2,0),∠C的平分线所在直线的方程为x+y=0.
(1)求顶点C的坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin(π-α)=log27$\frac{1}{9},且α∈(-\frac{π}{2},0)$,则tanα=$-\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”.某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛.现有甲、乙、丙三位选手进入了前三名的最后角逐.规定:每场知识竞赛前三名的得分都分别为a,b,c(a>b>c,且a,b,c∈N*);选手最后得分为各场得分之和.在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列说法正确的是(  )
A.每场比赛第一名得分a为4B.甲可能有一场比赛获得第二名
C.乙有四场比赛获得第三名D.丙可能有一场比赛获得第一名

查看答案和解析>>

同步练习册答案