| A. | 26 | B. | 24 | C. | 16 | D. | 14 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=-$\frac{2}{3}$x+$\frac{z}{3}$,
平移直线y=-$\frac{2}{3}$x+$\frac{z}{3}$,由图象可知当直线y=-$\frac{2}{3}$x+$\frac{z}{3}$经过点A时,直线y=-$\frac{2}{3}$x+$\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=4}\\{x+y=10}\end{array}\right.$,解得A(4,6).
此时z的最大值为z=2×4+3×6=26,
故选:A.
点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 28 | B. | 30 | C. | 48 | D. | 60 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 每场比赛第一名得分a为4 | B. | 甲可能有一场比赛获得第二名 | ||
| C. | 乙有四场比赛获得第三名 | D. | 丙可能有一场比赛获得第一名 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com