精英家教网 > 高中数学 > 题目详情
3.把复数z的共轭复数记作$\overline z$,已知$(1+2i)\overline z=4+3i$,求z及$\frac{z}{\overline z}$.

分析 (1)把已知等式变形,利用复数代数形式的乘除运算化简求得z;
(2)把z与$\overline{z}$代入$\frac{z}{\overline z}$,再由复数代数形式的乘除运算化简得答案.

解答 解:(1)由$(1+2i)\overline z=4+3i$,得:
$\overline{z}$=$\frac{4+3i}{1+2i}$=$\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
∴$z=\overline{\overline{z}}=2+i$;
(2)$\frac{z}{\overline{z}}$=$\frac{2+i}{2-i}=\frac{(2+i)^{2}}{(2-i)(2+i)}=\frac{3}{5}+\frac{4}{5}i$.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a>0,b>0且2a+b=1,则$\frac{1}{a}+\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的函数$f(x)=\frac{1}{3}a{x^3}+{x^2}+ax+1$既有极大值又有极小值,则实数a的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.[-1,0)∪(0,1]C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.k>3是方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设实数x和y满足约束条件$\left\{\begin{array}{l}{x+y≤10}\\{x-y≤2}\\{x≥4}\end{array}\right.$,则z=2x+3y的最大值为(  )
A.26B.24C.16D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中,a1=1,前100项和S100=10000.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若数列{an},{bn}的通项公式分别是an=(-1)2017•a,bn=2+$\frac{{{{(-1)}^{n+2018}}}}{n}且{a_n}<{b_n}$对任意n∈N*恒成立,则常数a的取值范围是[-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图(1),五边形PABCD是由一个正方形与一个等腰三角形拼接而成,其中∠APD=120°,AB=2,现将△PAD进行翻折,使得平面PAD⊥平面ABCD,连接PB,PC,所得四棱锥P-ABCD如图(2)所示,则四棱锥P-ABCD的外接球的表面积为(  )
A.$\frac{14}{3}π$B.$\frac{7}{3}π$C.$\frac{28}{3}π$D.14π

查看答案和解析>>

同步练习册答案