精英家教网 > 高中数学 > 题目详情
18.有三个家庭每个家庭三个人共计9人坐成一排,如果要求每个家庭都在一起,共有3!3!3!3!种排法(用阶乘的形式表示).

分析 利用捆绑法,即可得出结论.

解答 解:由题意要求每个家庭都在一起,共有3!3!3!3!种排法.
故答案为3!3!3!3!.

点评 本题考查利用排列知识解决实际问题,考查捆绑法的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列判断:
(1)从个体编号为1,2,…,1000的总体中抽取一个容量为50的样本,若采用系统抽样方法进行抽取,则分段间隔应为20;
(2)已知某种彩票的中奖概率为$\frac{1}{1000}$,那么买1000张这种彩票就一定会中奖(假设该彩票有足够的张数);
(3)从装有2个红球和2个黒球的口袋内任取2个球,恰有1个黒球与恰有2个黒球是互斥但不对立的两个事件;
(4)设具有线性相关关系的变量的一组数据是(1,3),(2,5),(3,6),(6,8),则它们的回归直线一定过点(3,$\frac{11}{2}$).
其中正确的序号是(  )
A.(1)、(2)、(3)B.(1)、(3)、(4)C.(3)、(4)D.(1)、(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:x2+y2=2交x轴于A、B两点,椭圆C是以AB为长轴,且离心率为$\frac{{\sqrt{2}}}{2}$,其左焦点为F,若P为圆O上一点,过原点O作PF的垂线交直线x=-2于点Q;
(1)求椭圆C的方程;
(2)当点P(不与A、B重合)在圆O上运动时,求证:直线PQ与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点$M({\sqrt{2},1})$,点N在圆O:x2+y2=1上,则∠OMN的最大值为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知 i是虚数单位,复数z1满足(z1-2)(1+i)=1-i.
(1)求复数z1
(2)若复数z2的虚部为2,且$\frac{z_2}{{\overline{z_1}}}$是实数,求|z2|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角B满足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\overrightarrow b$且$\overrightarrow a$,$\overrightarrow b$满足:$\overrightarrow a$•$\overrightarrow b$=-9,|$\overrightarrow a$|=3,|$\overrightarrow b$|=5,θ为$\overrightarrow a$,$\overrightarrow b$的夹角.
(1)求角B大小;
(2)求sin(B+θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{f'(1)}{e}•{e^x}-f(0)•x+\frac{1}{2}{x^2}(e$是自然对数的底数).
(Ⅰ)求函数f(x)的解析式
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X服从二项分布B(4,$\frac{1}{2}$),则D(3X+1)=(  )
A.3B.4C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,某小区准备在一直角围墙ABC内的空地上植造“绿地△ABD”,其中AB=a,BD长可根据需要进行调节(BC足够长),现规划在△ABD内接正方形BEFG内种花,其余地方种草,设种草的面积S1与种花的面积S2的比$\frac{S_1}{S_2}$为y.
(1)设角∠DAB=θ,将y表示成θ的函数关系;
(2)当BE为多长时,y有最小值,最小值是多少?

查看答案和解析>>

同步练习册答案