精英家教网 > 高中数学 > 题目详情
已知2x+2-6•2x-1>1,求x的取值范围.
考点:指、对数不等式的解法
专题:函数的性质及应用
分析:求出不等式2x+2-6•2x-1>1的解集即可.
解答: 解:不等式2x+2-6•2x-1>1可化为
4•2x-6•
1
2
•2x>1,
2x>20
x>0;
∴x的取值范围是{x|x>0}.
点评:本题考查了指数函数的图象与性质的应用问题,解题时应用指数函数的单调性求不等式的解集,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy上的区域D由不等式组
0≤x≤
2
y≤2
x≤
2
y
给定.若M(x,y)为D上的动点,点A的坐标为(
2
,1),则|
AM
|的最大值为(  )
A、4
2
B、3
2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为正实数,若函数f(x)=ax3+bx+ab-1是奇函数,则f(2)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2(a-2)x+5.
(1)若函数f(x)在(4,+∞)上单调递增,求实数a的取值范围;  
(2)若f(-1)=8,求函数f(x)在[0,3]上的最值,并写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用单调性定义证明函数f(x)=x+
1
x
在区间(0,1)上是减函数;
(2)已知函数f(x)=ax2+
1
3
x+4.(a∈R)在区间[-2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα+2sinα=0,其中
π
2
<α<π.
(Ⅰ)求
sinα-2cosα
2sinα-cosα
的值;
(Ⅱ)若sinβ=
3
5
π
2
<β<π,求cos﹙α+β﹚的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数f(x)=x2+bx+c,且不等式x2+bx+c>0的解集为{x|x<-1或x>
1
2
},则f(10x)>0的解集为(  )
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)顶点坐标为(1,2),且图象经过原点,函数g(x)=logax的图象经过点(
1
4
,-2).
(1)分别求出函数f(x)与g(x)的解析式;
(2)设函数F(x)=g(f(x)),求F(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x),满足f(1)=0,f(3)=-2,
(1)求函数解析式,作出函数f(x)的图象;
(2)求函数f(x)在x∈[-1,2)的值域.

查看答案和解析>>

同步练习册答案