分析 要使$\overrightarrow{PO}$$•\overrightarrow{PA}$最小,只有P与O最近,故此时OP和直线x-3y+10=0垂直.求出此时点P的坐标,可得OP、PA的值,再利用两个向量的数量积的定义求得$\overrightarrow{PO}$$•\overrightarrow{PA}$的最小值.
解答
解:由题意可得,要使$\overrightarrow{PO}$$•\overrightarrow{PA}$最小,只有P与O最近,
故此时OP和直线x-3y+10=0垂直.
设点P(3b-10,b),则有$\frac{b-0}{3b-10-0}$×$\frac{1}{3}$=-1,
求得b=3,
∴点P(-1,3),
∴OP=$\sqrt{10}$,切线PA=$\sqrt{O{P}^{2}-O{A}^{2}}$=$\sqrt{10-4}$=$\sqrt{6}$,
cos∠OPA=$\frac{PA}{PO}$=$\frac{\sqrt{6}}{\sqrt{10}}$,
∴$\overrightarrow{PO}$•$\overrightarrow{PA}$=$\sqrt{10}$×$\sqrt{6}$×$\frac{\sqrt{6}}{\sqrt{10}}$=6.
故答案为:6.
点评 本题主要考查直线和圆相切的性质,两个向量的数量积的定义,两条直线垂直的性质,体现了转化、数形结合的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com