11£®ÒÑÖªÅ×ÎïÏßE£ºx2=2py£¨p£¾0£©£¬¹ýµãM£¨1£¬-1£©×÷Å×ÎïÏßEµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬Ö±ÏßABµÄбÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóÅ×ÎïÏßEµÄ±ê×¼·½³Ì£»
£¨2£©ÓëÔ²x2+£¨y-1£©2=1ÏàÇеÄÖ±Ïßl£ºy=kx+m£¨ÆäÖÐm¡Ê£¨2£¬4]£©£¬ÓëÅ×ÎïÏß½»ÓÚP£¬QÁ½µã£¬ÈôÔÚÅ×ÎïÏßÉÏ´æÔÚµãC£¬Ê¹$\overrightarrow{OC}$=¦Ë$£¨\overrightarrow{OP}+\overrightarrow{OQ}£©$£¨¦Ë£¾0£©£¬Çó¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öÖ±ÏßABµÄ·½³ÌΪx-py+p=0£¬ÀûÓÃÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬´Ó¶øÇóp£¬¼´¿ÉÇó³öÅ×ÎïÏߵıê×¼·½³Ì£»
£¨2£©ÓÉÌâÒâÉèÖ±Ïßy=kx+m£¬ÓÖÖ±ÏßlÓëÔ²£¨y-1£©2+x2=1ÏàÇУ¬ËùÒÔ$\frac{|m-1|}{{\sqrt{1+{k^2}}}}=1$£¬¼´k2=m2-2m£¬ÓÉÖ±Ïß·½³ÌÓëÅ×ÎïÏßÁªÁ¢¿ÉµÃ¡÷=16k2+16m£¾0£¬½ø¶øÓÉΤ´ï¶¨Àí¿ÉµÃ$¦Ë=1+\frac{1}{2£¨m-2£©}$£¬´Ó¶øÇó¦ËµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòµãA´¦Å×ÎïÏßµÄÇÐÏßΪ$y=\frac{x_1}{p}x-{y_1}$£¬¹ýµãM£¨1£¬-1£©£¬Òò¶øx1-py1+p=0£»
ͬÀí£¬µãB´¦Å×ÎïÏßµÄÇÐÏßΪ$y=\frac{x_2}{p}x-{y_2}$£¬¹ýµãM£¨1£¬-1£©£¬Òò¶øx2-py2+p=0£®
Á½Ê½½áºÏ£¬ËµÃ÷Ö±Ïßx-py-p=0¹ýA£¬BÁ½µã£¬Ò²¾ÍÊÇÖ±ÏßABµÄ·½³ÌΪx-py+p=0£®
ÓÉÒÑÖªÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬Öªp=2£®
¹ÊËùÇóÅ×ÎïÏߵķ½³ÌΪx2=4y£®
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=kx+m£¬ÓÖÖ±ÏßlÓëÔ²£¨y-1£©2+x2=1ÏàÇУ¬
ËùÒÔ$\frac{|m-1|}{{\sqrt{1+{k^2}}}}=1$£¬¼´k2=m2-2m£®
ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬¼´$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}=4y}\end{array}}\right.$£¬
»¯¼òÏûyµÃx2-4kx-4m=0£¬¡÷=16k2+16m£¾0£¬¡àm£¾1»òm£¼0£¬¡ß2£¼m¡Ü4£¬¡à¡÷£¾0ºã³ÉÁ¢£®
ÉèP£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬Ôòx3+x4=4k£¬${y_3}+{y_4}=k£¨{x_3}+{x_4}£©+2m=4{k^2}+2m$£®
ÓÉ$\overrightarrow{OC}=¦Ë£¨\overrightarrow{OP}+\overrightarrow{OQ}£©£¨¦Ë£¾0£©$£¬Ôò$\overrightarrow{OC}=£¨4k¦Ë£¬¦Ë£¨4{k^2}+2m£©£©$£¬
ÓÖµãCÔÚÅ×ÎïÏßÉÏ£¬Ôò$¦Ë=1+\frac{1}{2£¨m-2£©}$£¬ËùÒԦ˵Äȡֵ·¶Î§Îª$[\frac{5}{4}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏߵķ½³ÌµÄÇ󷨼°Ô²×¶ÇúÏßÓëÖ±ÏßµÄÔËË㣬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬ÇÒ¹ýµã$M£¨1£¬\frac{3}{2}£©$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÍÖÔ²C³¤ÖáÁ½¶Ëµã·Ö±ðΪA£¬B£¬µãPΪÍÖÔ²ÉÏÒìÓÚA£¬BµÄ¶¯µã£¬¶¨Ö±Ïßx=4ÓëÖ±ÏßPA£¬PB·Ö±ð½»ÓÚM£¬NÁ½µã£¬ÓÖE£¨7£¬0£©£¬ÇóÖ¤£ºÖ±ÏßEM¡ÍÖ±ÏßEN£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÃÓëÇòÐľàÀëΪ1µÄÆ½ÃæÈ¥½ØÇò£¬ËùµÃ½ØÃæÔ²µÄÃæ»ýΪ¦Ð£¬ÔòÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{8¦Ð}{3}$B£®$\frac{32¦Ð}{3}$C£®8¦ÐD£®$\frac{8\sqrt{2}¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÅ×ÎïÏßC£ºy2=ax£¨a£¾0£©ÉÏÒ»µãM£¨x0£¬4£©µ½½¹µãFµÄ¾àÀë|MF|=$\frac{5}{4}$x0£¬Ö±ÏßlÓëÅ×ÎïÏßCÏཻÓÚ²»Í¬µÄA£¬BÁ½µã£¬Èç¹û$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4£®
£¨1£©ÇóÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©Ö¤Ã÷£ºÖ±Ïßl±Ø¹ýÒ»¶¨µã£¬²¢Çó³ö¸Ã¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹ØÓÚxµÄ·½³Ì$\sqrt{3}$cosx+sinx-a=0ÔÚÇø¼ä[0£¬¦Ð]ÉÏÇ¡ÓÐÁ½¸ö²»µÈʵ¸ù¦Á£¬¦Â£¬Ôò¦Á+¦ÂµÄֵΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª13+23+33+¡­+n3=$\frac{{{n^2}{{£¨an+b£©}^2}}}{4}$¶ÔÒ»ÇÐn¡ÊN+¶¼³ÉÁ¢£¬ÄÇôa£¬bµÄ¿ÉÄÜֵΪ£¨¡¡¡¡£©
A£®a=b=1B£®a=1£¬b=2C£®a=2£¬b=1D£®²»´æÔÚÕâÑùµÄa£¬b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cx£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©µÄ²¿·ÖÖµÈç±íËùʾ£º
x-20138
f¡ä£¨x£©-10680-90
¸ù¾Ý±íÖÐÊý¾Ý£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨¢ñ£©ÊµÊýcµÄֵΪ6£»µ±x=3ʱ£¬f£¨x£©È¡µÃ¼«´óÖµ£¨½«´ð°¸ÌîдÔÚºáÏßÉÏ£©£®
£¨¢ò£©ÇóʵÊýa£¬bµÄÖµ£®
£¨¢ó£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Éèf£¨x£©Óëg£¨x£©ÊǶ¨ÒåÔÚÍ¬Ò»Çø¼ä[a£¬b]ÉϵÄÁ½¸öº¯Êý£¬Èôº¯Êýy=f£¨x£©-g£¨x£©ÔÚ[a£¬b]ÉÏÁ½¸ö²»Í¬µÄÁãµã£¬Ôò³Æf£¨x£©Óëg£¨x£©µÄ¡°¹ØÁªÇø¼ä¡±£¬Èôf£¨x£©=$\frac{1}{3}{x^3}-{x^2}$-xÓëg£¨x£©=2x+bµÄ¡°¹ØÁªÇø¼ä¡±ÊÇ[-3£¬0]£¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-9£¬0]B£®$[0£¬\frac{5}{3}]$C£®$[-9£¬\frac{5}{3}]$D£®$[0£¬\frac{5}{3}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}{x^3}$-ax+b£¬ÔÚµãM£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪ9x+3y-10=0£¬Çó
£¨1£©ÊµÊýa£¬bµÄÖµ£»            
£¨2£©º¯Êýf£¨x£©µÄµ¥µ÷Çø¼äÒÔ¼°ÔÚÇø¼ä[0£¬3]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸