精英家教网 > 高中数学 > 题目详情
1.设a>0,b>0,c>0,且a+b+c=1,求证:8abc≤(1-a)(1-b)(1-c).

分析 由条件a>0,b>0,c>0,且a+b+c=1,可得(1-a)(1-b)(1-c)=(b+c)(a+c)(a+b),运用二元基本不等式即可得证.

解答 证明:a>0,b>0,c>0,且a+b+c=1,
可得(1-a)(1-b)(1-c)=(b+c)(a+c)(a+b)
≥2$\sqrt{bc}$•2$\sqrt{ac}$•2$\sqrt{ab}$=8abc,
当且仅当a=b=c取得等号,
即有8abc≤(1-a)(1-b)(1-c).

点评 本题考查不等式的证明,注意运用均值不等式和不等式的性质,考查推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=$\sqrt{2}$,M为线段B1D1的中点.
(1)求证:MB⊥AC
(2)求三棱锥D1-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y2=ax(a>0),经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a,b,c都是正数,求证:a+b+c≤$\frac{{a}^{2}+{b}^{2}}{2c}$+$\frac{{b}^{2}{+c}^{2}}{2a}$+$\frac{{c}^{2}+{a}^{2}}{2b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y=4x2上的一点M到焦点的距离为4,则点M的纵坐标为(  )
A.16B.36C.$\frac{31}{8}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:1+$\frac{1}{2}$$+\frac{1}{3}$$+…+\frac{1}{{2}^{n}}$>1$+\frac{n}{2}$(n≥2,n∈N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c∈R+.求证:
(1)ab(a+b)+bc(b+c)+ca(c+a)≥6abc;
(2)(a+b+c)($\frac{1}{a}$+$\frac{1}{b+c}$)≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用数学归纳法证明1+a+a2+…+an+1=$\frac{1-{a}^{n+2}}{1-a}$(a≠1,n∈N*),在验证n=1成立时,左边的项是(  )
A.1B.1+aC.1+a+a2D.1+a+a2+a4

查看答案和解析>>

同步练习册答案