精英家教网 > 高中数学 > 题目详情
20.如图,半圆AOB是某市休闲广场的平面示意图,半径OA的长为10,管理部门在A,B两处各安装好一个光源,其相应的光强度分别为4和9,根据光学原理,地面上某处照度y与光强度I成正比,与光源距离x的平方成反比,即y=$\frac{kI}{{x}^{2}}$(k为比例系数),经测量,在弧AB的中心C处的照度为130.(C处的照度为A,B两处光源的照度之和)
(1)求比例系数k的值;
(2)现在管理部门计划在半圆弧AB上,照度最小处增设一个光源P,试问新增光源P安装在什么位置?

分析 (1)半径为r=10,BC=AC=10$\sqrt{2}$,可得y=$\frac{kI}{{x}^{2}}$,点C受光源A的照度为$\frac{k×4}{100×2}$,点C受光源B的照度为$\frac{k×9}{100×2}$,可得$\frac{k×4}{100×2}$+$\frac{k×9}{100×2}$=130,解出即可得出.
(2)由(1)可得y=$\frac{2000I}{{x}^{2}}$,设新增光源P距离AP=x处,可得y=$\frac{2000×4}{{x}^{2}}$+$\frac{2000×9}{400-{x}^{2}}$,利用基本不等式的性质即可得出.

解答 解:(1)∵半径为r=10,
∴BC=AC=10$\sqrt{2}$
∵y=$\frac{kI}{{x}^{2}}$,
则点C受光源A的照度为$\frac{k×4}{100×2}$,
点C受光源B的照度为$\frac{k×9}{100×2}$,
∴$\frac{k×4}{100×2}$+$\frac{k×9}{100×2}$=130,
解得k=2000
(2)由(1)可得y=$\frac{2000I}{{x}^{2}}$,
设新增光源P距离AP=x处,
则y=$\frac{2000×4}{{x}^{2}}$+$\frac{2000×9}{400-{x}^{2}}$,
∴y=5[x2+(400-x2)]$(\frac{4}{{x}^{2}}+\frac{9}{400-{x}^{2}})$=5$[13+\frac{4(400-{x}^{2})}{{x}^{2}}+\frac{9{x}^{2}}{400-{x}^{2}}]$≥5•$(13+2\sqrt{\frac{4(400-{x}^{2})}{{x}^{2}}×\frac{9{x}^{2}}{400-{x}^{2}}})$=125,当且仅当x=4$\sqrt{10}$时取等号.
新增光源P安装在距离点A出4$\sqrt{10}$时.

点评 本题主要考查了函数模型的选择与应用、基本不等式的性质、函数的最值的求解,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x(2-x)(0<x<2)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间(0,1)中随机地取出两个数,则两数之和小于$\frac{5}{6}$的概率为(  )
A.$\frac{47}{72}$B.$\frac{2}{3}$C.$\frac{25}{72}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,这是一个正八边形的序列,则第n个图形的边数(不包含内部的边)是6n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对某产品1至6月份销售量及其价格进行调查,其售价和销售量之间的一组数据如下表所示:
月份123456
单价x(元)99.51010.5118
销售量y(件)111086514
(1)根据1至5月份的数据,求出y关于x的回归直线方程;
(2)根据(1)的回归方程计算6月份的残差估计值;
(3)预计在今后的销售中,销售量与单价仍然服从(1)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)(参考数据:$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=392,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=502.5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.随机取两个正实数x,y,满足x+y<2,则y>x2的概率是$\frac{7}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\left\{\begin{array}{l}{x=1+tsin70°}\\{y=2+tcos70°}\end{array}\right.$(t为参数)的倾斜角为(  )
A.70°B.20°C.160°D.110°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上函数f(x)是可导的,f(1)=2,且f(x)+f'(x)<1,则不等式f(x)-1<e1-x的解集是(  )(注:e为自然对数的底数)
A.(1,+∞)B.(-∞,0)∪(0,1)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a≥1,f(x)=-sinxcosx+a(sinx+cosx)-1.
(1)求当a=1时,f(x)的值域;
(2)若函数f(x)在[0,π]内有且只有一个零点,求a的取值范围.

查看答案和解析>>

同步练习册答案