精英家教网 > 高中数学 > 题目详情
64个正数排成8行8列,如图所示:在符号aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行中的数依次都成等差数列,而每一列中的数依次都成等比数列(每列公比q都相等)且a11=
1
2
,a24=1,a32=
1
4

(1)求a12和a13的值;
(2)记第n行各项之和为An(1≤n≤8),数列{an},{bn},{cn}满足an=
36
An
,mbn+1=2(an+mbn)(m为非零常数),cn=
bn
an
,且
c
2
1
+
c
2
7
=100
,求c1+c2+…c7的取值范围.
考点:等差数列与等比数列的综合,数列的求和
专题:等差数列与等比数列
分析:(1)利用等差数列与等比数列的通项公式即可得出;
(2)利用等差数列与等比数列的通项公式及其前n项和公式可得An,an.mbn+1=2(an+mbn)(m为非零常数),变形为
bn+1
2n+1
-
bn
2n
=
1
m
,利用等差数列的通项公式公式可得cn,利用等差数列的前n项和公式可得c1+c2+…+c7=
7(c1+c7)
2
,利用(c1+c7)2=
c
2
1
+
c
2
7
+2c1c7≤2(
c
2
1
+
c
2
7
)
=200,即可得出.
解答: 解:(1)设第一行公差为d,
∵a11=
1
2
,a24=1,a32=
1
4

a32=a12q2=(
1
2
+d)q2=
1
4
a24=a14q=(
1
2
+3d)q=1

解出d=
1
2
=q,
∴a12=1,a13=
3
2

(2)∵an1=a11(
1
2
)n-1
=(
1
2
)n
an8=a18(
1
2
)n-1
=4×(
1
2
)n-1
=8(
1
2
)n

∴An=
an1+an8
2
×8
=36×(
1
2
)n

an=2n(1≤n≤8,n∈N*),
∵mbn+1=2(an+mbn)(m为非零常数),
bn+1
2n+1
-
bn
2n
=
1
m

cn=
bn
an

∴cn+1-cn=
1
m

∴{cn}是等差数列,
故c1+c2+…+c7=
7(c1+c7)
2

(c1+c7)2=
c
2
1
+
c
2
7
+2c1c7≤2(
c
2
1
+
c
2
7
)
=200,
-10
2
c1+c7≤10
2

∴c1+c2+…+c7[-35
2
,35
2
]
点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、基本不等式的性质,考查了变形转化能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)判定函数f(x)的奇偶性;
(2)讨论函数f(x)在区间(-∞,-1]上的单调性;
(3)求函数f(x)在区间[2,4]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x(e为自然对数的底数).
(1)求f(x)的最小值;
(2)若不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤
3
2
},且M∩P≠φ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在椭圆
x2
a2
+
y2
8
=1(a>0)中,F1,F2分别为椭圆的左、右焦点,B、D分别为椭圆的左、右顶点,A为椭圆在第一象限内的任意一点,直线AF1交椭圆于另一点C,交y轴于点E,且点F1、F2三等分线段BD.
(Ⅰ)求a的值;
(Ⅱ)若四边形EBCF2为平行四边形,求点C的坐标;
(Ⅲ)当S△AF1O=S△CEO时,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[0,10]中任意取一个数,则它与4之和大于10的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

O是坐标原点,P是椭圆
x=3cosϕ
y=2sinϕ
(ϕ为参数)上离心角为-
π
6
所对应的点,那么直线OP的倾斜角的正切值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某发电厂在节能减排的科研活动中,对热能与电能的转化和燃煤每分钟的添加量之间的关系进行科学研究,对该厂A号机组的跟踪调研中发现,若该机组每分钟燃煤的添加量设计标准为a吨,在正常状态下,通过自动传输带给该机组每分钟添加燃煤x吨,理论上可以生产电能x3-x+10千瓦,而由于实际添加量x与设计标准a存在误差,实际上会导致电能损耗2|x-a|千瓦,最终生产的电能为f(x)千瓦.
(1)试写出f(x)关于x的函数表达式,并求出f(x)的单调增区间;
(2)该科研小组决定调整设计标准a,控制添加量x∈[
1
2
3
2
]
(单位:吨),实现对最终生产的电能f(x)的有效控制的科学实验,若某次试验中a∈[
1
2
,1]
(单位:吨),用电高峰期间,要求该厂的输出电能为每分钟不低于9千瓦,否则将供电不正常,试问这次实验能否实现这个目标?

查看答案和解析>>

科目:高中数学 来源: 题型:

直角三角形斜边长为8,求面积和周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3-4x+4(a∈R)在x=2取得极值,若关于x的方程f(x)=b至多有两个零点,则实数b的取值范围
 

查看答案和解析>>

同步练习册答案