精英家教网 > 高中数学 > 题目详情
20.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F和A(0,b)的连线与C的一条渐近线相交于点P,且$\overrightarrow{PF}$=2$\overrightarrow{AP}$,则双曲线C的离心率为(  )
A.3B.$\sqrt{3}$C.4D.2

分析 设P(m,n),由$\overrightarrow{PF}$=2$\overrightarrow{AP}$,可得(c-m,-n)=2(m,n-b),解得m,n,把P坐标代入y=$\frac{b}{a}$x,即可得出.

解答 解:设P(m,n),由$\overrightarrow{PF}$=2$\overrightarrow{AP}$,可得(c-m,-n)=2(m,n-b),
解得m=$\frac{c}{3}$,n=$\frac{2b}{3}$,
∴P$(\frac{c}{3},\frac{2b}{3})$,代入y=$\frac{b}{a}$x,可得$\frac{c}{a}$=2,即e=2.
故选:D.

点评 本题考查了双曲线的标准方程及其性质、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在对两个变量x、y进行线性回归分析时一般有下列步骤:
①对所求出的回归方程作出解释;②收集数据(xi,yi),i=1,2,…n
③求线性回归方程;                  ④根据所搜集的数据绘制散点图.
若根据实际情况能够判定变量x、y具有线性相关性,则在下列操作顺序中正确的是(  )
A.①②④③B.③②④①C.②③①④D.②④③①

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow m$=(1,7)与向量$\overrightarrow n$=(tanα,18+tanα)平行,则tan2α的值为(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=x2-2ax+3为定义在[-2,2]上的函数.
(1)当a=1时,求f(x)的最大值与最小值.
(2)若f(x)的最大值为M,最小值为m,函数g(a)=M-m,求g(a)的解析式,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U={0,1,2,3,4,5},集合A=∅,则∁UA={0,1,2,3,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列给出的赋值语句中正确的是(  )
A.4=MB.M=-MC.B=A=3D.X=Y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中C1,C3有一个共同的焦点,若$\overrightarrow{M{F_1}}+\overrightarrow{MN}$=$\overrightarrow 0$,则曲线C1的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{2}+1}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.当x∈(0,e]时,证明${e^2}{x^2}-\frac{5}{2}x>(x+1)lnx$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=1+log2x与g(x)=2-x+1在同一直角坐标系下的图象大致是③(填序号)

查看答案和解析>>

同步练习册答案