精英家教网 > 高中数学 > 题目详情

在数列中,为常数,,且成公比不等于1的等比数列
(1)求的值;
(2)设,求数列的前项和 

(1);(2) 

解析试题分析:(1)根据等差数列的定义及题设知该数列是一个等差数列,公差为再由成等比数列得一个含的方程,解这个方程即可得的值 (2)由(1)知,,所以,这种数列用裂项法求其和
试题解析:(1)∵为常数,∴              (2分)
 
成等比数列,∴,解得          (4分)
时,不合题意,舍去∴                    (5分)
(2)由(1)知,                              (6分)
             (9分)

                 (12分)
考点:1、等差数列与等比数列;2、裂项法求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列满足为常数,
(1)当时,求
(2)当时,求的值;
(3)问:使恒成立的常数是否存在?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1+a2+…+an=n2(n∈N*).
(1)求数列{an}的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为公差不为零的等差数列,首项的部分项恰为等比数列,且.
(1)求数列的通项公式(用表示);
(2)若数列的前项和为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.
(1)求a及k的值;
(2)设数列{bn}的通项bn,证明数列{bn}是等差数列,并求其前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

同步练习册答案