精英家教网 > 高中数学 > 题目详情

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求ABC面积的最大值.

(1)(2)

解析试题分析:(1)依次利用余弦降幂、正弦倍角,辅助角公式化简函数f(x),得到f(x)的最简形式,根据相切且切点有无数多个的条件可得为函数f(x)的最值(m>0即为最大值),从而求的m的值,再根据最值之间的距离即为函数f(x)的周期(即周期为),从而求的a的值.
(2)从正弦函数的图像可以分析得到图像的对称中心在正弦函数图像上,故带入函数即可得到A角的值,再利用余弦定理与基本不等式求出bc的最值,从而得到三角形面积的最值.
试题解析:(1)=       3分
由题意,函数的周期为,且最大(或最小)值为,而,
所以,                          6分
(2)∵(是函数图象的一个对称中心∴
又因为A为⊿ABC的内角,所以                     9分
,再由角A的余弦定理得,则(基本不等式),所以,综上当且仅当时,的面积取得最大值.            12分
考点:三角函数 三角形余弦定理 基本不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为等差数列的前项和,已知.
(1)求
(2)设,数列的前项和记为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}的公差,且成等比数列.
(1)求数列{}的公差及通项
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是首项和公比均为的等比数列,设.

(1)求证数列是等差数列;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列中,已知
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,又,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,是常数,),且成公比不为的等比数列.
(1)求的值;
(2)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,为常数,,且成公比不等于1的等比数列
(1)求的值;
(2)设,求数列的前项和 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的首项为a,公差为d,且方程ax2-3x+2=0的解为1,d.
(1)求{an}的通项公式及前n项和公式;
(2)求数列{3n-1an}的前n项和Tn.

查看答案和解析>>

同步练习册答案