精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,则g(-2)=-15.

分析 由f(2)=8a+2b-7=3,得到8a+2b=10,从而f(-2)=-8a-2b-7=-17,由此能求出g(-2).

解答 解:∵函数f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,
∴f(2)=8a+2b-7=3,∴8a+2b=10,
∴f(-2)=-8a-2b-7=-17,
∴g(-2)=f(-2)+2=-17+2=-15.
故答案为:-15.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图,假设A、B、C、D四个点在同一竖直平面
(1)求B,D两点的海拔落差h;
(2)求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a为实数,函数f(x)=x2e1-x-a(x-1).
(1)当a=1时,求f(x)在(${\frac{3}{2}$,2)上的最大值;
(2)设函数g(x)=f(x)+a(x-1-e1-x),当g(x)有两个极值点x1,x2(x1<x2)时,总有x2g(x1)≤λf'(x1),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知P(-2,y)是角θ终边上一点,且sinθ=$\frac{{\sqrt{5}}}{5}$,则y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组函数中表示同一函数的是(  )
A.f(x)=x-1与g(x)=$\sqrt{{{(x-1)}^2}}$B.f(x)=x与g(x)=${(\sqrt{x})^2}$
C.f(x)=x2-x与g(t)=t2-tD.f(x)=x-1与g(x)=$\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)满足:
①定义域为R;
②?x∈R,有f(x+2)=f(x);
③当?x∈[0,2]时,f(x)=1-|x-1|.记φ(x)=f(x)-log8|x|(x∈R).根据以上信息,可以得到函数φ(x)的零点个数为(  )
A.14B.12C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x3+3x-1在区间[n,n+1)(n∈Z)上有零点,则n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中:
①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
②已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=2,则x2-x-2=24
③函数y=$\frac{1}{1-x}$在(-∞,0)上是增函数;
④方程2|x|=log2(x+2)+1的实根的个数是2.
所有正确命题的序号是③④(请将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“任意的x>1,都有ex>1”的否定是(  )
A.存在x0≤1,使${e^{x_0}}≤1$成立B.存在x0>1,使${e^{x_0}}≤1$成立
C.任意的x≤1,都有ex≤1成立D.任意的x>1,都有ex≤1成立

查看答案和解析>>

同步练习册答案