精英家教网 > 高中数学 > 题目详情
12.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图,假设A、B、C、D四个点在同一竖直平面
(1)求B,D两点的海拔落差h;
(2)求AD的长.

分析 (1)分别过点C,D作CE⊥BE,DF⊥CF,垂足分别为E,F,解三角形可得,
(2)根据余弦定理即可求出.

解答 解:(1)分别过点C,D作CE⊥BE,DF⊥CF,垂足分别为E,F,
在Rt△CBF和Rt△DCF中,CF=bsinβ,DF=csin γ
∴h=CF+DF=bsin β+csin γ.
(2):联结AC.在△ABC中,由余弦定理得AC2=a2+b2+2abcos(α+β),
在△ACD中,由余弦定理得AD2=AC2+c2-2cACcos(π-γ+θ),
所以AD=α$\sqrt{{a}^{2}+{b}^{2}+2abcos(α+β)+{c}^{2}+2c\sqrt{{a}^{2}+{b}^{2}+2abcos(α+β)}cos(γ-θ)}$.

点评 本题考查了解三角形实际生活中的应用,关键是构造三角形,利用余弦定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.一次考试中,五名学生的数学、物理成绩如表所示:
学生ABCDE
数学成绩x(分)8991939597
物理成绩y(分)8789899293
(1)根据上表数据在图中作散点图,求y与x的线性回归方程;
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:
回归直线的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已计算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是定义在(-∞,+∞)上,以2为周期的周期函数,且f(x)为偶函数,在区间[2,3]上,f(x)=-2(x-3)2+4,则x∈[0,2]时,f(x)=-2(x-1)2+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设2cosx-2x+π+4=0,y+siny•cosy-1=0,则sin(x-2y)的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z满足2z+$\overline{z}$=3-2i,其中i为虚数单位,则z=1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为g(x)=3x2 -2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow{a}$=(1,-4),$\overrightarrow{b}$=(-1,x),$\overrightarrow{c}$=($\overrightarrow{a}$+3$\overrightarrow{b}$),若$\overrightarrow{a}$∥$\overrightarrow{c}$,则实数x的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C在极坐标方程为ρ=4cosθ-2sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=5+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).若直线l与圆C相交于不同的两点P,Q.
(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;
(Ⅱ)若弦长|PQ|=4,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ax3+bx-7,g(x)=f(x)+2,且f(2)=3,则g(-2)=-15.

查看答案和解析>>

同步练习册答案