精英家教网 > 高中数学 > 题目详情
2.一次考试中,五名学生的数学、物理成绩如表所示:
学生ABCDE
数学成绩x(分)8991939597
物理成绩y(分)8789899293
(1)根据上表数据在图中作散点图,求y与x的线性回归方程;
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:
回归直线的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已计算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

分析 (1)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程;
(2)用列举法可得从5名学生中任取2名学生的所有情况和其中至少有一人物理成绩高于90分的情况包含的事件数目,由古典概型公式,计算可得答案.

解答 解:(1)∵$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30,
∴$\widehatb$=0.75,$\widehata$=20.25,
故y关于x的线性回归方程是:$\widehaty$=0.75x+20.25.
(2)从5名学生中任取2名学生的所有情况为:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)、(A1,A2)、(A1,A3)、(A2,A3)共种情10况.…(3分)
其中至少有一人物理成绩高于90分的情况有:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)共7种情况,
故上述抽取的5人中选2人,选中的学生的物理成绩至少有一人的成绩高于90分的概率P=0.7.

点评 本题主要考查了古典概型和线性回归方程等知识,考查了学生的数据处理能力和应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某电视台推出某种游戏节目,规则如下:选手面对1-8号8扇大门,依次按响门上的门铃,门铃会播放一段流行歌曲,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调査中,得到如下2x2列联表
正误
年龄
正确错误合计
[20,30)103040
[30,40]107080
合计20100120

P(K2<k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅰ)判断是否有90%的把握认为猜对歌曲名称与年龄有关,说明你的理由;
(Ⅱ)若在这次场外调査中按年龄段用分层抽样的方法选取6名选手,并从中抽取两名幸运选手,求两名幸运选手不在同一年龄段的概率.(视频率为概率)
(参考公式:其中K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的极坐标方程为:ρ=6sinθ-8cosθ,曲线C2的参数方程为:$\left\{\begin{array}{l}{x=8cosφ}\\{y=3sinφ}\end{array}\right.$(φ为参数).
(1)化C1,C2为直角坐标方程,并说明它们分别表示什么曲线;
(2)已知曲线C1上的点P(ρ,$\frac{π}{2}$),Q为曲线C2上一动点,求PQ的中点M到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知偶函数f(x)在[0,2]单调递减,若a=f(0.54),b=f(${{{log}_{\frac{1}{2}}}4}$),c=f(20.6),则a、b、c的大小关系是(  )
A.a>b>cB.c>a>bC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0且g(3)=0,不等式f(x)g(x)<0的解集是(  )
A.(-∞,-3)∪(0,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(-3,0)D.(0,3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,内角A,B,C所对边为a,b,c,且acosC+ccosA=2bcosA,则sinB+sinC的取值范围是(  )
A.($\frac{{\sqrt{3}}}{2}$,$\sqrt{3}}$]B.($\frac{\sqrt{3}}{2}$,$\sqrt{3}$)C.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$]D.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}{b}$=2,则${∫}_{0}^{C}({x}^{2}-1)dx$=(  )
A.$±2\sqrt{2}$B.$2\sqrt{2}$C.$±\sqrt{15}$D.$4\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,已知C(2,5),边BC上的中线AD所在的直线方程是11x-14y+3=0,BC边上高线AH所在的直线方程是y=2x-1,试求直线AB、BC、CA的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图,假设A、B、C、D四个点在同一竖直平面
(1)求B,D两点的海拔落差h;
(2)求AD的长.

查看答案和解析>>

同步练习册答案