精英家教网 > 高中数学 > 题目详情
12.某电视台推出某种游戏节目,规则如下:选手面对1-8号8扇大门,依次按响门上的门铃,门铃会播放一段流行歌曲,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调査中,得到如下2x2列联表
正误
年龄
正确错误合计
[20,30)103040
[30,40]107080
合计20100120

P(K2<k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅰ)判断是否有90%的把握认为猜对歌曲名称与年龄有关,说明你的理由;
(Ⅱ)若在这次场外调査中按年龄段用分层抽样的方法选取6名选手,并从中抽取两名幸运选手,求两名幸运选手不在同一年龄段的概率.(视频率为概率)
(参考公式:其中K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

分析 (Ⅰ)根据所给的二维条形图得到列联表,利用公式求出k2=3>2.706,即可得出结论;
(Ⅱ)设事件A为3名幸运选手中至少有一人在20~30岁之间,由已知得20~30岁之间的人数为2人,30~40岁之间的人数为4人,从6人中取3人的结果有15种,事件A的结果有8种,即可求出两名幸运选手不在同一年龄段的概率.

解答 解:(Ⅰ)由k=$\frac{120×(70×10-30×10)^{2}}{20×100×40×80}$=3>2.706
所以有90%的把握认为猜对歌曲名称与否和年龄有关.
(Ⅱ)设事件A为两名幸运选手不在同一年龄段,由已知得20~30岁之间的人数为2人,30~40岁之间的人数为4人,
从6人中取2人的结果有15种,事件A的结果有8种,
故两名幸运选手不在同一年龄段的概率P(A)=$\frac{8}{15}$.

点评 本题考查独立性检验知识的运用,考查分层抽样,考查概率知识,考查学生分析解决问题的能力,确定基本事件总数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知幂函数f(x)=xα(α为常数)的图象过点(2,8),则f(3)=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的方程x3-3x2-a=0有三个不同的实数解,则a的取值范围是(  )
A.(-4,0)B.(0,4)C.[0,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为304200元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一空间几何体的三视图如图所示,则该几何体的表面积是(  )
A.24π+4$\sqrt{5}$πB.20π+4$\sqrt{5}$πC.24π+8$\sqrt{5}$πD.20π+8$\sqrt{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2x3-3x2-12x在[-2,3]上的最大值和最小值分别为(  )
A.7,-20B.0,-9C.-9,-20D.-4,-20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点P(cosα,sinα)在直线y=-2x上,则cos(α+$\frac{3π}{2}$)的值等于±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一物体沿直线以v(t)=t2+1(t的单位s,v的单位:m/s)的速度运动,则该物体在0~3s间行进的路程S(S的单位:m)为(  )
A.12B.10C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一次考试中,五名学生的数学、物理成绩如表所示:
学生ABCDE
数学成绩x(分)8991939597
物理成绩y(分)8789899293
(1)根据上表数据在图中作散点图,求y与x的线性回归方程;
(2)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率.
参考公式:
回归直线的方程:$\widehaty$=<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>b^$\widehatb$x+$\widehata$,其中$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$,
附:已计算出:$\overline x$=93,$\overline y$=90,$\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}$=40,$\sum_{i=1}^5$(xi-$\overline x$)(yi-$\overline y$)=30.

查看答案和解析>>

同步练习册答案