| A. | (-∞,-3)∪(0,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(-3,0) | D. | (0,3)∪(3,+∞) |
分析 构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.
解答 解:令h(x)=f(x)g(x),则h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),因此函数h(x)在R上是奇函数.
∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,
∴h(x)在x<0时单调递增,
故函数h(x)在R上单调递增.
∵g(3)=0,
∴g(-3)=g(3)=0,
∵h(-3)=f(-3)g(-3)=0,
∴h(x)=f(x)g(x)<0=h(-3),
∴x<-3.
当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=-h(-3)=0,
∴h(x)<0的解集为(0,3).
∴不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).
故选:A.
点评 本题主要考查复合函数的求导运算和函数的单调性与其导函数正负之间的关系,关键时构造函数,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 24π+4$\sqrt{5}$π | B. | 20π+4$\sqrt{5}$π | C. | 24π+8$\sqrt{5}$π | D. | 20π+8$\sqrt{5}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学生 | A | B | C | D | E |
| 数学成绩x(分) | 89 | 91 | 93 | 95 | 97 |
| 物理成绩y(分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com