分析 推出S2n=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$.放缩相加即得结论.
解答 证明:∵an=$\frac{(-1)^{n+1}}{n}$,
∴S2n=1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$
=(1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{2n-1}$+$\frac{1}{2n}$)-(1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{n}$)
=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$.
∴S2n=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$≤$\frac{1}{\sqrt{2}n}$+$\frac{1}{\sqrt{2}n}$+…+$\frac{1}{\sqrt{2}n}$=n•$\frac{1}{\sqrt{2}n}$=$\frac{\sqrt{2}}{2}$.
即有S${\;}_{2n}<\frac{\sqrt{2}}{2}$.
点评 本题考查数列的求和,考查数学归纳法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-2,-1) | B. | (-1,0) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{5}$ | B. | $\frac{3π}{5}$ | C. | $\frac{4π}{5}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com